program.py 22.1 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27 28 29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
35
from ppocr.utils import profiler
D
dyning 已提交
36
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51 52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
53
        )
L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82 83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
84 85


86
def merge_config(config, opts):
L
LDOUBLEV 已提交
87 88 89 90 91 92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
L
LDOUBLEV 已提交
94
        if "." not in key:
95 96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
97
            else:
98
                config[key] = value
L
LDOUBLEV 已提交
99 100
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
101
            assert (
102
                sub_keys[0] in config
103 104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105 106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
107 108 109 110 111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
L
LDOUBLEV 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
W
WenmuZhou 已提交
127
        if use_gpu and not paddle.is_compiled_with_cuda():
W
WenmuZhou 已提交
128
            print(err)
L
LDOUBLEV 已提交
129 130 131 132 133
            sys.exit(1)
    except Exception as e:
        pass


134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
153
def train(config,
D
dyning 已提交
154 155 156
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
157 158 159 160 161 162 163 164
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
165
          log_writer=None,
S
stephon 已提交
166
          scaler=None):
W
WenmuZhou 已提交
167 168
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
169
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
170 171 172 173
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
174
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
175

D
dyning 已提交
176
    global_step = 0
177 178
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
179 180 181 182
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
183 184
        if len(valid_dataloader) == 0:
            logger.info(
185 186
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
187 188
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
189
        logger.info(
190 191
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
192
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
193 194
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
195 196
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
197 198 199 200
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
201
    model_average = False
W
WenmuZhou 已提交
202 203
    model.train()

T
tink2123 已提交
204
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
205
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
A
andyjpaddle 已提交
206
    extra_input = False
A
andyjpaddle 已提交
207
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
208 209 210
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
211 212
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
213
    try:
L
fix bug  
LDOUBLEV 已提交
214
        model_type = config['Architecture']['model_type']
215
    except:
L
fix bug  
LDOUBLEV 已提交
216
        model_type = None
A
andyjpaddle 已提交
217

T
tink2123 已提交
218
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
219

220 221 222 223
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
224 225
    train_reader_cost = 0.0
    train_batch_cost = 0.0
226
    reader_start = time.time()
227
    eta_meter = AverageMeter()
228 229 230

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
231

T
tink2123 已提交
232
    for epoch in range(start_epoch, epoch_num + 1):
233 234 235 236 237
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
238
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
239
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
240
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
241
            if idx >= max_iter:
W
WenmuZhou 已提交
242 243 244
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
245
            if use_srn:
T
tink2123 已提交
246
                model_average = True
S
stephon 已提交
247 248 249 250 251 252 253 254

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
T
tink2123 已提交
255
            else:
S
stephon 已提交
256 257
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
258
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
259
                    preds = model(batch)
S
stephon 已提交
260 261
                else:
                    preds = model(images)
262

W
WenmuZhou 已提交
263 264
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
S
stephon 已提交
265 266 267 268 269 270 271 272

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
273
            optimizer.clear_grad()
W
WenmuZhou 已提交
274

275 276
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
文幕地方's avatar
文幕地方 已提交
277
                if model_type in ['kie']:
278
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
279 280 281
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
282
                else:
A
andyjpaddle 已提交
283 284 285 286 287 288
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
                    else:
                        post_result = post_process_class(preds, batch[1])
289 290 291 292
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

293 294 295
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
296
            global_step += 1
文幕地方's avatar
文幕地方 已提交
297
            total_samples += len(images)
W
WenmuZhou 已提交
298

D
dyning 已提交
299 300
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
301 302 303 304 305 306

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

307
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
308 309
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
310

311 312 313
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
314
                logs = train_stats.log()
L
LDOUBLEV 已提交
315

316 317 318 319 320
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
L
LDOUBLEV 已提交
321
                       'ips: {:.5f} samples/s, eta: {}'.format(
322 323 324 325 326
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
327
                logger.info(strs)
328

文幕地方's avatar
文幕地方 已提交
329
                total_samples = 0
330 331
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
332 333
            # eval
            if global_step > start_eval_step and \
334 335
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
336 337 338 339 340 341 342
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
343 344 345 346 347
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
348
                    model_type,
T
tink2123 已提交
349
                    extra_input=extra_input)
L
LDOUBLEV 已提交
350 351 352
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
353 354

                # logger metric
355
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
356 357
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
358

L
LDOUBLEV 已提交
359
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
360
                        main_indicator]:
L
LDOUBLEV 已提交
361
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
362 363 364 365 366 367
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
368
                        config,
W
WenmuZhou 已提交
369 370 371
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
372 373
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
374
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
375 376 377 378
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
379
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
380 381 382 383 384 385 386 387 388 389 390 391
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
392

文幕地方's avatar
文幕地方 已提交
393
            reader_start = time.time()
W
WenmuZhou 已提交
394 395 396 397 398 399
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
400
                config,
W
WenmuZhou 已提交
401 402 403
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
404 405
                epoch=epoch,
                global_step=global_step)
406

407 408
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
409

W
WenmuZhou 已提交
410 411 412 413 414 415
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
416
                config,
W
WenmuZhou 已提交
417 418 419
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
420 421
                epoch=epoch,
                global_step=global_step)
422
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
423 424
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
425

L
LDOUBLEV 已提交
426
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
427 428
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
429 430
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
431 432 433
    return


M
refine  
MissPenguin 已提交
434 435 436 437
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
438
         model_type=None,
T
tink2123 已提交
439
         extra_input=False):
W
WenmuZhou 已提交
440 441 442 443
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
444 445 446 447 448
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
449 450
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
451
        for idx, batch in enumerate(valid_dataloader):
452
            if idx >= max_iter:
W
WenmuZhou 已提交
453
                break
W
fix bug  
WenmuZhou 已提交
454
            images = batch[0]
W
WenmuZhou 已提交
455
            start = time.time()
T
tink2123 已提交
456
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
457
                preds = model(images, data=batch[1:])
458
            elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
459
                preds = model(batch)
X
xiaoting 已提交
460
            else:
L
LDOUBLEV 已提交
461
                preds = model(images)
462 463 464 465 466 467
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
468 469 470
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
471
            if model_type in ['kie']:
472
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
473
            elif model_type in ['table', 'vqa']:
474 475
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
476
            else:
477 478
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
479

W
fix bug  
WenmuZhou 已提交
480
            pbar.update(1)
W
WenmuZhou 已提交
481
            total_frame += len(images)
L
LDOUBLEV 已提交
482 483
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
484

W
fix bug  
WenmuZhou 已提交
485
    pbar.close()
W
WenmuZhou 已提交
486
    model.train()
L
LDOUBLEV 已提交
487 488
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
489

T
tink2123 已提交
490

B
Bin Lu 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


540
def preprocess(is_train=False):
L
licx 已提交
541
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
542
    profiler_options = FLAGS.profiler_options
L
licx 已提交
543
    config = load_config(FLAGS.config)
544
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
545
    profile_dic = {"profiler_options": FLAGS.profiler_options}
546
    config = merge_config(config, profile_dic)
L
licx 已提交
547

W
WenmuZhou 已提交
548 549 550 551 552 553 554 555 556 557
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
558
    logger = get_logger(log_file=log_file)
L
licx 已提交
559 560 561 562 563

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

564 565 566 567 568 569
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
570 571
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
572
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
573
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
文幕地方's avatar
文幕地方 已提交
574 575
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE', 'SVTR',
        'TableMaster'
W
WenmuZhou 已提交
576
    ]
L
licx 已提交
577

578 579 580 581 582
    device = 'cpu'
    if use_gpu:
        device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
    if use_xpu:
        device = 'xpu'
W
WenmuZhou 已提交
583
    device = paddle.set_device(device)
D
dyning 已提交
584

D
dyning 已提交
585
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
586

587 588
    loggers = []

589
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
590
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
591
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
592
        log_writer = VDLLogger(save_model_dir)
593
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
594 595
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
596 597 598 599 600 601 602 603
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
604
        loggers.append(log_writer)
D
dyning 已提交
605
    else:
606
        log_writer = None
D
dyning 已提交
607
    print_dict(config, logger)
608 609 610 611 612 613

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
614 615
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
616
    return config, device, logger, log_writer