program.py 26.0 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27
import paddle
import paddle.distributed as dist
from tqdm import tqdm
X
xiaoting 已提交
28 29
import cv2
import numpy as np
W
WenmuZhou 已提交
30 31
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
32 33
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
34
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
35
from ppocr.utils.logging import get_logger
36
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
37
from ppocr.utils import profiler
D
dyning 已提交
38
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
39

D
dyning 已提交
40

L
LDOUBLEV 已提交
41 42 43 44 45 46 47
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
48 49 50 51 52
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
53 54
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
55
        )
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
84 85
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
86 87


88
def merge_config(config, opts):
L
LDOUBLEV 已提交
89 90 91 92 93 94
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
95
    for key, value in opts.items():
L
LDOUBLEV 已提交
96
        if "." not in key:
97 98
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
99
            else:
100
                config[key] = value
L
LDOUBLEV 已提交
101 102
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
103
            assert (
104
                sub_keys[0] in config
105 106
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
107 108
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
109 110 111 112 113
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
114
    return config
L
LDOUBLEV 已提交
115 116


X
xiaoting 已提交
117
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
118 119 120 121
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
122 123 124 125
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
126 127 128
          "model on CPU"

    try:
X
xiaoting 已提交
129 130
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
131
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
132 133 134 135
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
136 137 138 139 140
            sys.exit(1)
    except Exception as e:
        pass


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass

文幕地方's avatar
文幕地方 已提交
159

文幕地方's avatar
文幕地方 已提交
160 161 162 163 164 165
def to_float32(preds):
    if isinstance(preds, dict):
        for k in preds:
            if isinstance(preds[k], dict) or isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            else:
A
andyjpaddle 已提交
166
                preds[k] = paddle.to_tensor(preds[k], dtype='float32')
文幕地方's avatar
文幕地方 已提交
167 168 169 170 171 172 173
    elif isinstance(preds, list):
        for k in range(len(preds)):
            if isinstance(preds[k], dict):
                preds[k] = to_float32(preds[k])
            elif isinstance(preds[k], list):
                preds[k] = to_float32(preds[k])
            else:
A
andyjpaddle 已提交
174
                preds[k] = paddle.to_tensor(preds[k], dtype='float32')
文幕地方's avatar
文幕地方 已提交
175
    else:
A
andyjpaddle 已提交
176
        preds = paddle.to_tensor(preds, dtype='float32')
文幕地方's avatar
文幕地方 已提交
177
    return preds
178

文幕地方's avatar
文幕地方 已提交
179

W
WenmuZhou 已提交
180
def train(config,
D
dyning 已提交
181 182 183
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
184 185 186 187 188 189 190 191
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
192
          log_writer=None,
S
stephon 已提交
193
          scaler=None):
W
WenmuZhou 已提交
194 195
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
196
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
197 198 199 200
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
201
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
202

D
dyning 已提交
203
    global_step = 0
204 205
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
206 207 208 209
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
210 211
        if len(valid_dataloader) == 0:
            logger.info(
212 213
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
214 215
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
216
        logger.info(
217 218
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
219
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
220 221
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
222 223
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
224 225 226 227
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
228
    model_average = False
W
WenmuZhou 已提交
229 230
    model.train()

T
tink2123 已提交
231
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
232 233 234
    extra_input_models = [
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN"
    ]
A
andyjpaddle 已提交
235
    extra_input = False
A
andyjpaddle 已提交
236
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
237 238 239
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
240 241
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
242
    try:
L
fix bug  
LDOUBLEV 已提交
243
        model_type = config['Architecture']['model_type']
244
    except:
L
fix bug  
LDOUBLEV 已提交
245
        model_type = None
A
andyjpaddle 已提交
246

T
tink2123 已提交
247
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
248

249 250 251 252
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
253 254
    train_reader_cost = 0.0
    train_batch_cost = 0.0
255
    reader_start = time.time()
256
    eta_meter = AverageMeter()
257 258 259

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
260

T
tink2123 已提交
261
    for epoch in range(start_epoch, epoch_num + 1):
262 263 264 265 266
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
X
xiaoting 已提交
267

W
WenmuZhou 已提交
268
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
269
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
270
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
271
            if idx >= max_iter:
W
WenmuZhou 已提交
272 273 274
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
275
            if use_srn:
T
tink2123 已提交
276
                model_average = True
S
stephon 已提交
277 278
            # use amp
            if scaler:
文幕地方's avatar
文幕地方 已提交
279
                with paddle.amp.auto_cast(level='O2'):
S
stephon 已提交
280 281
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
282 283
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
284 285
                    else:
                        preds = model(images)
文幕地方's avatar
文幕地方 已提交
286 287 288 289 290 291
                preds = to_float32(preds)
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
T
tink2123 已提交
292
            else:
S
stephon 已提交
293 294
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
X
xiaoting 已提交
295
                elif model_type in ["kie", 'vqa', 'sr']:
L
LDOUBLEV 已提交
296
                    preds = model(batch)
S
stephon 已提交
297 298
                else:
                    preds = model(images)
文幕地方's avatar
文幕地方 已提交
299 300
                loss = loss_class(preds, batch)
                avg_loss = loss['loss']
S
stephon 已提交
301 302
                avg_loss.backward()
                optimizer.step()
X
xiaoting 已提交
303

W
WenmuZhou 已提交
304
            optimizer.clear_grad()
W
WenmuZhou 已提交
305

306 307
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
X
xiaoting 已提交
308
                if model_type in ['kie', 'sr']:
309
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
310 311 312
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
313
                else:
A
andyjpaddle 已提交
314 315 316 317
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
andyjpaddle 已提交
318 319 320
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
321 322
                    else:
                        post_result = post_process_class(preds, batch[1])
323 324 325 326
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

327 328 329
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
330
            global_step += 1
文幕地方's avatar
文幕地方 已提交
331
            total_samples += len(images)
W
WenmuZhou 已提交
332

D
dyning 已提交
333 334
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
335 336 337 338 339 340

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

341
            if log_writer is not None and dist.get_rank() == 0:
文幕地方's avatar
文幕地方 已提交
342 343
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
344

345 346 347
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
348
                logs = train_stats.log()
L
LDOUBLEV 已提交
349

350 351 352 353
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
X
xiaoting 已提交
354 355
                    '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
                    'ips: {:.5f} samples/s, eta: {}'.format(
356 357 358 359 360
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
361
                logger.info(strs)
362

文幕地方's avatar
文幕地方 已提交
363
                total_samples = 0
364 365
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
366 367
            # eval
            if global_step > start_eval_step and \
368 369
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
370 371 372 373 374 375 376
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
377 378 379 380 381
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
382
                    model_type,
文幕地方's avatar
文幕地方 已提交
383 384
                    extra_input=extra_input,
                    scaler=scaler)
L
LDOUBLEV 已提交
385 386 387
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
388 389

                # logger metric
390
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
391 392
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
393

L
LDOUBLEV 已提交
394
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
395
                        main_indicator]:
L
LDOUBLEV 已提交
396
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
397 398 399 400 401 402
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
403
                        config,
W
WenmuZhou 已提交
404 405 406
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
407 408
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
409
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
410 411 412 413
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
414
                if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
415 416 417 418 419 420 421 422 423 424 425 426
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
427

文幕地方's avatar
文幕地方 已提交
428
            reader_start = time.time()
W
WenmuZhou 已提交
429 430 431 432 433 434
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
435
                config,
W
WenmuZhou 已提交
436 437 438
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
439 440
                epoch=epoch,
                global_step=global_step)
441

442 443
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
444

W
WenmuZhou 已提交
445 446 447 448 449 450
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
451
                config,
W
WenmuZhou 已提交
452 453 454
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
455 456
                epoch=epoch,
                global_step=global_step)
457
            if log_writer is not None:
文幕地方's avatar
文幕地方 已提交
458 459
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
460

L
LDOUBLEV 已提交
461
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
462 463
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
464 465
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
466 467 468
    return


M
refine  
MissPenguin 已提交
469 470 471 472
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
473
         model_type=None,
文幕地方's avatar
文幕地方 已提交
474 475
         extra_input=False,
         scaler=None):
W
WenmuZhou 已提交
476 477 478 479
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
480 481 482 483 484
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
485 486
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
X
xiaoting 已提交
487
        sum_images = 0
W
WenmuZhou 已提交
488
        for idx, batch in enumerate(valid_dataloader):
489
            if idx >= max_iter:
W
WenmuZhou 已提交
490
                break
W
fix bug  
WenmuZhou 已提交
491
            images = batch[0]
W
WenmuZhou 已提交
492
            start = time.time()
X
xiaoting 已提交
493
            
文幕地方's avatar
文幕地方 已提交
494 495 496 497 498 499 500
            # use amp
            if scaler:
                with paddle.amp.auto_cast(level='O2'):
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
X
xiaoting 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514
                    elif model_type in ['sr']:
                        preds = model(batch)
                        sr_img = preds["sr_img"]
                        lr_img = preds["lr_img"]

                        for i in (range(sr_img.shape[0])):
                            fm_sr = (sr_img[i].numpy() * 255).transpose(
                                1, 2, 0).astype(np.uint8)
                            fm_lr = (lr_img[i].numpy() * 255).transpose(
                                1, 2, 0).astype(np.uint8)
                            cv2.imwrite("output/images/{}_{}_sr.jpg".format(sum_images,
                                                                            i), fm_sr)
                            cv2.imwrite("output/images/{}_{}_lr.jpg".format(sum_images,
                                                                            i), fm_lr) 
文幕地方's avatar
文幕地方 已提交
515 516
                    else:
                        preds = model(images)
X
xiaoting 已提交
517
            else:
文幕地方's avatar
文幕地方 已提交
518 519 520 521
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
                elif model_type in ["kie", 'vqa']:
                    preds = model(batch)
X
xiaoting 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535
                elif model_type in ['sr']:
                    preds = model(batch)
                    sr_img = preds["sr_img"]
                    lr_img = preds["lr_img"]

                    for i in (range(sr_img.shape[0])):
                        fm_sr = (sr_img[i].numpy() * 255).transpose(
                            1, 2, 0).astype(np.uint8)
                        fm_lr = (lr_img[i].numpy() * 255).transpose(
                            1, 2, 0).astype(np.uint8)
                        cv2.imwrite("output/images/{}_{}_sr.jpg".format(sum_images,
                                                                        i), fm_sr)
                        cv2.imwrite("output/images/{}_{}_lr.jpg".format(sum_images,
                                                                        i), fm_lr)                    
文幕地方's avatar
文幕地方 已提交
536 537 538
                else:
                    preds = model(images)

539 540 541 542 543 544
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
545 546 547
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
548
            if model_type in ['kie']:
549
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
550
            elif model_type in ['table', 'vqa']:
551 552
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
X
xiaoting 已提交
553 554
            elif model_type in ['sr']:
                eval_class(preds, batch_numpy)
M
MissPenguin 已提交
555
            else:
556 557
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
558

W
fix bug  
WenmuZhou 已提交
559
            pbar.update(1)
W
WenmuZhou 已提交
560
            total_frame += len(images)
X
xiaoting 已提交
561
            sum_images += 1
L
LDOUBLEV 已提交
562 563
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
564

W
fix bug  
WenmuZhou 已提交
565
    pbar.close()
W
WenmuZhou 已提交
566
    model.train()
L
LDOUBLEV 已提交
567 568
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
569

T
tink2123 已提交
570

B
Bin Lu 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


620
def preprocess(is_train=False):
L
licx 已提交
621
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
622
    profiler_options = FLAGS.profiler_options
L
licx 已提交
623
    config = load_config(FLAGS.config)
624
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
625
    profile_dic = {"profiler_options": FLAGS.profiler_options}
626
    config = merge_config(config, profile_dic)
L
licx 已提交
627

W
WenmuZhou 已提交
628 629 630 631 632 633 634 635 636 637
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
638
    logger = get_logger(log_file=log_file)
L
licx 已提交
639 640 641

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
642
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
643

644 645 646 647 648 649
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
650 651
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
652
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
653
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
654
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
X
xiaoting 已提交
655 656
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN', 
        'Gestalt'
W
WenmuZhou 已提交
657
    ]
L
licx 已提交
658

659
    if use_xpu:
X
xiaoting 已提交
660 661 662 663 664 665
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
666
    device = paddle.set_device(device)
D
dyning 已提交
667

D
dyning 已提交
668
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
669

670 671
    loggers = []

672
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
673
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
674
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
andyjpaddle 已提交
675
        log_writer = VDLLogger(vdl_writer_path)
676
        loggers.append(log_writer)
文幕地方's avatar
文幕地方 已提交
677 678
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
679 680 681 682 683 684 685 686
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
687
        loggers.append(log_writer)
D
dyning 已提交
688
    else:
689
        log_writer = None
D
dyning 已提交
690
    print_dict(config, logger)
691 692 693 694 695 696

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
697 698
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
699
    return config, device, logger, log_writer