utility.py 12.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
L
LDOUBLEV 已提交
24 25
import json
from PIL import Image, ImageDraw, ImageFont
26
import math
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
L
LDOUBLEV 已提交
50 51 52 53 54 55

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

L
licx 已提交
56 57 58
    #SAST parmas
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
59
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
60

L
LDOUBLEV 已提交
61
    #params for text recognizer
T
tink2123 已提交
62
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
L
LDOUBLEV 已提交
63
    parser.add_argument("--rec_model_dir", type=str)
T
tink2123 已提交
64 65
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
66
    parser.add_argument("--rec_batch_num", type=int, default=30)
T
fix bug  
tink2123 已提交
67
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
68 69 70 71
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
T
tink2123 已提交
72
    parser.add_argument("--use_space_char", type=bool, default=True)
D
dyning 已提交
73
    parser.add_argument("--enable_mkldnn", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
74
    parser.add_argument("--use_zero_copy_run", type=bool, default=False)
L
LDOUBLEV 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()
D
dyning 已提交
102 103 104
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            config.enable_mkldnn()
L
LDOUBLEV 已提交
105

T
tink2123 已提交
106
    #config.enable_memory_optim()
L
LDOUBLEV 已提交
107
    config.disable_glog_info()
L
LDOUBLEV 已提交
108

littletomatodonkey's avatar
littletomatodonkey 已提交
109 110 111 112 113 114
    if args.use_zero_copy_run:
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        config.switch_use_feed_fetch_ops(False)
    else:
        config.switch_use_feed_fetch_ops(True)

L
LDOUBLEV 已提交
115 116
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
T
tink2123 已提交
117 118
    for name in input_names:
        input_tensor = predictor.get_input_tensor(name)
L
LDOUBLEV 已提交
119 120 121 122 123 124 125 126
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
127
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
128 129 130 131
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
132
    return src_im
L
LDOUBLEV 已提交
133 134


L
LDOUBLEV 已提交
135 136
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
137
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
138 139 140 141 142 143 144 145 146
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


W
WenmuZhou 已提交
147 148 149 150 151 152
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/simfang.ttf"):
153 154 155
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
156
        image(Image|array): RGB image
157 158 159 160
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
161
        font_path: the path of font which is used to draw text
162 163 164
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
165 166
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
167 168 169 170
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
171
            continue
W
WenmuZhou 已提交
172
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
173
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
174
    if txts is not None:
L
LDOUBLEV 已提交
175
        img = np.array(resize_img(image, input_size=600))
176
        txt_img = text_visual(
W
WenmuZhou 已提交
177 178 179 180 181 182
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
183
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
184 185
        return img
    return image
186 187


188 189 190 191
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
192 193

    import random
L
LDOUBLEV 已提交
194

195 196 197
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
198
    for (box, txt) in zip(boxes, txts):
T
tink2123 已提交
199 200
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
201
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
202 203 204 205 206 207 208 209 210 211
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
212 213
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
T
tink2123 已提交
214 215
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
216 217 218
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
219 220
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
221 222 223
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
T
tink2123 已提交
224 225 226 227
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
228 229 230 231
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
232 233 234
    return np.array(img_show)


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
260 261 262 263 264 265
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
266 267 268 269 270 271 272
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
273
        font_path: the path of font which is used to draw text
274 275 276 277 278 279 280 281 282 283
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
284 285
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
286
        return blank_img, draw_txt
L
LDOUBLEV 已提交
287

288 289 290 291
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
292
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
293 294 295

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
296
    count, index = 1, 0
297 298
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
299
        if scores[idx] < threshold or math.isnan(scores[idx]):
300 301 302 303 304 305 306 307 308 309 310
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
311
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
312 313 314 315 316
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
317
            count += 1
318 319 320
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
321
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
322
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
323
        # whether add new blank img or not
L
LDOUBLEV 已提交
324
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
325 326 327
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
328
        count += 1
329 330 331 332 333 334
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
335 336


D
dyning 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

W
WenmuZhou 已提交
373
    new_img = draw_ocr(image, boxes, txts, scores)
L
LDOUBLEV 已提交
374

M
MissPenguin 已提交
375
    cv2.imwrite(img_name, new_img)