db_fpn.py 13.9 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
L
LDOUBLEV 已提交
23
import os
L
fix det  
LDOUBLEV 已提交
24 25
import sys

L
fix  
LDOUBLEV 已提交
26 27 28 29
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))

L
LDOUBLEV 已提交
30 31 32
from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule


L
LDOUBLEV 已提交
33
class DSConv(nn.Layer):
L
LDOUBLEV 已提交
34 35 36 37 38 39 40 41
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding,
                 stride=1,
                 groups=None,
                 if_act=True,
L
LDOUBLEV 已提交
42 43
                 act="relu",
                 **kwargs):
L
LDOUBLEV 已提交
44
        super(DSConv, self).__init__()
L
LDOUBLEV 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        if groups == None:
            groups = in_channels
        self.if_act = if_act
        self.act = act
        self.conv1 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)

        self.bn1 = nn.BatchNorm(num_channels=in_channels, act=None)

        self.conv2 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=int(in_channels * 4),
            kernel_size=1,
            stride=1,
            bias_attr=False)

        self.bn2 = nn.BatchNorm(num_channels=int(in_channels * 4), act=None)

        self.conv3 = nn.Conv2D(
            in_channels=int(in_channels * 4),
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            bias_attr=False)
        self._c = [in_channels, out_channels]
        if in_channels != out_channels:
            self.conv_end = nn.Conv2D(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
                bias_attr=False)

    def forward(self, inputs):

        x = self.conv1(inputs)
        x = self.bn1(x)

        x = self.conv2(x)
        x = self.bn2(x)
        if self.if_act:
            if self.act == "relu":
                x = F.relu(x)
            elif self.act == "hardswish":
                x = F.hardswish(x)
            else:
                print("The activation function({}) is selected incorrectly.".
                      format(self.act))
                exit()

        x = self.conv3(x)
        if self._c[0] != self._c[1]:
            x = x + self.conv_end(inputs)
        return x
W
WenmuZhou 已提交
105 106


D
dyning 已提交
107
class DBFPN(nn.Layer):
W
wangjingyeye 已提交
108
    def __init__(self, in_channels, out_channels, use_asf=None, **kwargs):
D
dyning 已提交
109
        super(DBFPN, self).__init__()
W
WenmuZhou 已提交
110
        self.out_channels = out_channels
W
wangjingyeye 已提交
111
        self.use_asf = use_asf
W
WenmuZhou 已提交
112
        weight_attr = paddle.nn.initializer.KaimingUniform()
W
WenmuZhou 已提交
113

D
dyning 已提交
114
        self.in2_conv = nn.Conv2D(
W
WenmuZhou 已提交
115 116 117
            in_channels=in_channels[0],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
118
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
119
            bias_attr=False)
D
dyning 已提交
120
        self.in3_conv = nn.Conv2D(
W
WenmuZhou 已提交
121 122 123
            in_channels=in_channels[1],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
124
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
125
            bias_attr=False)
D
dyning 已提交
126
        self.in4_conv = nn.Conv2D(
W
WenmuZhou 已提交
127 128 129
            in_channels=in_channels[2],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
130
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
131
            bias_attr=False)
D
dyning 已提交
132
        self.in5_conv = nn.Conv2D(
W
WenmuZhou 已提交
133 134 135
            in_channels=in_channels[3],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
136
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
137
            bias_attr=False)
D
dyning 已提交
138
        self.p5_conv = nn.Conv2D(
W
WenmuZhou 已提交
139 140 141 142
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
143
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
144
            bias_attr=False)
D
dyning 已提交
145
        self.p4_conv = nn.Conv2D(
W
WenmuZhou 已提交
146 147 148 149
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
150
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
151
            bias_attr=False)
D
dyning 已提交
152
        self.p3_conv = nn.Conv2D(
W
WenmuZhou 已提交
153 154 155 156
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
157
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
158
            bias_attr=False)
D
dyning 已提交
159
        self.p2_conv = nn.Conv2D(
W
WenmuZhou 已提交
160 161 162 163
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
164
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
165 166
            bias_attr=False)

W
wangjingyeye 已提交
167 168 169
        if self.use_asf:
            self.asf = ASFBlock(self.out_channels, self.out_channels // 4)

W
WenmuZhou 已提交
170 171 172 173 174 175 176 177
    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.in5_conv(c5)
        in4 = self.in4_conv(c4)
        in3 = self.in3_conv(c3)
        in2 = self.in2_conv(c2)

W
WenmuZhou 已提交
178 179 180 181 182 183
        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4
W
WenmuZhou 已提交
184 185 186 187 188

        p5 = self.p5_conv(in5)
        p4 = self.p4_conv(out4)
        p3 = self.p3_conv(out3)
        p2 = self.p2_conv(out2)
W
WenmuZhou 已提交
189 190 191
        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
W
WenmuZhou 已提交
192 193

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
W
wangjingyeye 已提交
194 195 196 197

        if self.use_asf:
            fuse = self.asf(fuse, [p5, p4, p3, p2])

W
WenmuZhou 已提交
198
        return fuse
L
LDOUBLEV 已提交
199 200


L
rename  
LDOUBLEV 已提交
201
class RSELayer(nn.Layer):
L
LDOUBLEV 已提交
202
    def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
L
rename  
LDOUBLEV 已提交
203
        super(RSELayer, self).__init__()
L
LDOUBLEV 已提交
204
        weight_attr = paddle.nn.initializer.KaimingUniform()
L
fix  
LDOUBLEV 已提交
205
        self.out_channels = out_channels
L
LDOUBLEV 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        self.in_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size // 2),
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.se_block = SEModule(self.out_channels)
        self.shortcut = shortcut

    def forward(self, ins):
        x = self.in_conv(ins)
        if self.shortcut:
            out = x + self.se_block(x)
        else:
            out = self.se_block(x)
        return out


L
rename  
LDOUBLEV 已提交
225
class RSEFPN(nn.Layer):
L
fix det  
LDOUBLEV 已提交
226
    def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
L
rename  
LDOUBLEV 已提交
227
        super(RSEFPN, self).__init__()
L
fix det  
LDOUBLEV 已提交
228
        self.out_channels = out_channels
L
LDOUBLEV 已提交
229 230
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
L
LDOUBLEV 已提交
231 232 233

        for i in range(len(in_channels)):
            self.ins_conv.append(
L
LDOUBLEV 已提交
234
                RSELayer(
L
LDOUBLEV 已提交
235 236 237 238 239
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
L
LDOUBLEV 已提交
240
                RSELayer(
L
LDOUBLEV 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
                    out_channels,
                    out_channels // 4,
                    kernel_size=3,
                    shortcut=shortcut))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
L
LDOUBLEV 已提交
272 273


L
rename  
LDOUBLEV 已提交
274
class LKPAN(nn.Layer):
L
LDOUBLEV 已提交
275
    def __init__(self, in_channels, out_channels, mode='large', **kwargs):
L
rename  
LDOUBLEV 已提交
276
        super(LKPAN, self).__init__()
L
LDOUBLEV 已提交
277 278 279
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

L
LDOUBLEV 已提交
280 281
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
L
LDOUBLEV 已提交
282
        # pan head
L
LDOUBLEV 已提交
283 284
        self.pan_head_conv = nn.LayerList()
        self.pan_lat_conv = nn.LayerList()
L
LDOUBLEV 已提交
285

L
LDOUBLEV 已提交
286 287 288 289 290 291 292 293 294
        if mode.lower() == 'lite':
            p_layer = DSConv
        elif mode.lower() == 'large':
            p_layer = nn.Conv2D
        else:
            raise ValueError(
                "mode can only be one of ['lite', 'large'], but received {}".
                format(mode))

L
LDOUBLEV 已提交
295 296 297
        for i in range(len(in_channels)):
            self.ins_conv.append(
                nn.Conv2D(
L
LDOUBLEV 已提交
298
                    in_channels=in_channels[i],
L
LDOUBLEV 已提交
299 300 301 302 303 304
                    out_channels=self.out_channels,
                    kernel_size=1,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            self.inp_conv.append(
L
LDOUBLEV 已提交
305
                p_layer(
L
LDOUBLEV 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                    in_channels=self.out_channels,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            if i > 0:
                self.pan_head_conv.append(
                    nn.Conv2D(
                        in_channels=self.out_channels // 4,
                        out_channels=self.out_channels // 4,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        weight_attr=ParamAttr(initializer=weight_attr),
                        bias_attr=False))
            self.pan_lat_conv.append(
L
LDOUBLEV 已提交
324
                p_layer(
L
LDOUBLEV 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
                    in_channels=self.out_channels // 4,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
L
LDOUBLEV 已提交
342 343 344 345 346 347 348 349 350 351
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        f5 = self.inp_conv[3](in5)
        f4 = self.inp_conv[2](out4)
        f3 = self.inp_conv[1](out3)
        f2 = self.inp_conv[0](out2)

L
LDOUBLEV 已提交
352 353 354
        pan3 = f3 + self.pan_head_conv[0](f2)
        pan4 = f4 + self.pan_head_conv[1](pan3)
        pan5 = f5 + self.pan_head_conv[2](pan4)
L
LDOUBLEV 已提交
355

L
LDOUBLEV 已提交
356 357 358 359
        p2 = self.pan_lat_conv[0](f2)
        p3 = self.pan_lat_conv[1](pan3)
        p4 = self.pan_lat_conv[2](pan4)
        p5 = self.pan_lat_conv[3](pan5)
L
LDOUBLEV 已提交
360 361 362 363 364 365 366

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
W
wangjingyeye 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416


class ASFBlock(nn.Layer):
    def __init__(self, in_channels, inter_channels, out_features_num=4):
        super(ASFBlock, self).__init__()
        weight_attr = paddle.nn.initializer.KaimingUniform()
        self.in_channels = in_channels
        self.inter_channels = inter_channels
        self.out_features_num = out_features_num
        self.conv = nn.Conv2D(in_channels, inter_channels, 3, padding=1)

        self.attention_block_1 = nn.Sequential(
            #Nx1xHxW
            nn.Conv2D(
                1,
                1,
                3,
                bias_attr=False,
                padding=1,
                weight_attr=ParamAttr(initializer=weight_attr)),
            nn.ReLU(),
            nn.Conv2D(
                1,
                1,
                1,
                bias_attr=False,
                weight_attr=ParamAttr(initializer=weight_attr)),
            nn.Sigmoid())

        self.attention_block_2 = nn.Sequential(
            nn.Conv2D(
                inter_channels,
                out_features_num,
                1,
                bias_attr=False,
                weight_attr=ParamAttr(initializer=weight_attr)),
            nn.Sigmoid())

    def forward(self, fuse_features, features_list):
        fuse_features = self.conv(fuse_features)
        attention_scores = self.attention_block_1(
            paddle.mean(
                fuse_features, axis=1, keepdim=True)) + fuse_features
        attention_scores = self.attention_block_2(attention_scores)
        assert len(features_list) == self.out_features_num

        out_list = []
        for i in range(self.out_features_num):
            out_list.append(attention_scores[:, i:i + 1] * features_list[i])
        return paddle.concat(out_list, axis=1)