提交 6560d702 编写于 作者: L LDOUBLEV

add FEPAN and head

上级 6670f50a
......@@ -31,13 +31,14 @@ def get_bias_attr(k):
class Head(nn.Layer):
def __init__(self, in_channels, name_list):
def __init__(self, in_channels, name_list, kernel_list=[3, 2, 2]):
super(Head, self).__init__()
self.conv1 = nn.Conv2D(
in_channels=in_channels,
out_channels=in_channels // 4,
kernel_size=3,
padding=1,
kernel_size=kernel_size[0],
padding=int(kernel_size[0] // 2),
weight_attr=ParamAttr(),
bias_attr=False)
self.conv_bn1 = nn.BatchNorm(
......@@ -50,7 +51,7 @@ class Head(nn.Layer):
self.conv2 = nn.Conv2DTranspose(
in_channels=in_channels // 4,
out_channels=in_channels // 4,
kernel_size=2,
kernel_size=kernel_size[1],
stride=2,
weight_attr=ParamAttr(
initializer=paddle.nn.initializer.KaimingUniform()),
......@@ -65,7 +66,7 @@ class Head(nn.Layer):
self.conv3 = nn.Conv2DTranspose(
in_channels=in_channels // 4,
out_channels=1,
kernel_size=2,
kernel_size=kernel_size[1],
stride=2,
weight_attr=ParamAttr(
initializer=paddle.nn.initializer.KaimingUniform()),
......
......@@ -20,7 +20,7 @@ import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
from ppocr.backbones.det_mobilenet_v3 import SEModule
from ppocr.backbones.det_mobilenet_v3 import SEModule, ConvBNLayer
class DBFPN(nn.Layer):
......@@ -179,3 +179,85 @@ class CAFPN(nn.Layer):
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
return fuse
class FEPAN(nn.Layer):
def __init__(self, in_channels, out_channels, **kwargs):
super(FEPAN, self).__init__()
self.out_channels = out_channels
weight_attr = paddle.nn.initializer.KaimingUniform()
self.ins_convs = []
self.inp_convs = []
# pan head
self.pan_head_conv = []
self.pan_lat_conv = []
for i in range(len(in_channels)):
self.ins_conv.append(
nn.Conv2D(
in_channels=in_channels[0],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False))
self.inp_conv.append(
ConvBNLayer(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=9,
padding=4))
if i > 0:
self.pan_head_conv.append(
nn.Conv2D(
in_channels=self.out_channels // 4,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
stride=2,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False))
self.pan_lat_conv.append(
ConvBNLayer(
in_channels=self.out_channels // 4,
out_channels=self.out_channels // 4,
kernel_size=9,
padding=4))
def forward(self, x):
c2, c3, c4, c5 = x
in5 = self.ins_conv[3](c5)
in4 = self.ins_conv[2](c4)
in3 = self.ins_conv[1](c3)
in2 = self.ins_conv[0](c2)
out4 = in4 + F.upsample(
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
out3 = in3 + F.upsample(
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
out2 = in2 + F.upsample(
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
f5 = self.inp_conv[3](in5)
f4 = self.inp_conv[2](out4)
f3 = self.inp_conv[1](out3)
f2 = self.inp_conv[0](out2)
pan3 = f3 + self.pan_head[0](f2)
pan4 = f4 + self.pan_head[1](pan3)
pan5 = f5 + self.pan_head[2](pan4)
p2 = self.pan_lat[0](f2)
p3 = self.pan_lat[1](pan3)
p4 = self.pan_lat[2](pan4)
p5 = self.pan_lat[3](pan5)
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
return fuse
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册