db_fpn.py 12.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
L
LDOUBLEV 已提交
23
import os
L
fix det  
LDOUBLEV 已提交
24 25
import sys

L
fix  
LDOUBLEV 已提交
26 27 28 29
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))

L
LDOUBLEV 已提交
30 31 32
from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule


L
LDOUBLEV 已提交
33
class DSConv(nn.Layer):
L
LDOUBLEV 已提交
34 35 36 37 38 39 40 41
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding,
                 stride=1,
                 groups=None,
                 if_act=True,
L
LDOUBLEV 已提交
42 43
                 act="relu",
                 **kwargs):
L
LDOUBLEV 已提交
44
        super(DSConv, self).__init__()
L
LDOUBLEV 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        if groups == None:
            groups = in_channels
        self.if_act = if_act
        self.act = act
        self.conv1 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)

        self.bn1 = nn.BatchNorm(num_channels=in_channels, act=None)

        self.conv2 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=int(in_channels * 4),
            kernel_size=1,
            stride=1,
            bias_attr=False)

        self.bn2 = nn.BatchNorm(num_channels=int(in_channels * 4), act=None)

        self.conv3 = nn.Conv2D(
            in_channels=int(in_channels * 4),
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            bias_attr=False)
        self._c = [in_channels, out_channels]
        if in_channels != out_channels:
            self.conv_end = nn.Conv2D(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
                bias_attr=False)

    def forward(self, inputs):

        x = self.conv1(inputs)
        x = self.bn1(x)

        x = self.conv2(x)
        x = self.bn2(x)
        if self.if_act:
            if self.act == "relu":
                x = F.relu(x)
            elif self.act == "hardswish":
                x = F.hardswish(x)
            else:
                print("The activation function({}) is selected incorrectly.".
                      format(self.act))
                exit()

        x = self.conv3(x)
        if self._c[0] != self._c[1]:
            x = x + self.conv_end(inputs)
        return x
W
WenmuZhou 已提交
105 106


D
dyning 已提交
107
class DBFPN(nn.Layer):
W
WenmuZhou 已提交
108
    def __init__(self, in_channels, out_channels, **kwargs):
D
dyning 已提交
109
        super(DBFPN, self).__init__()
W
WenmuZhou 已提交
110
        self.out_channels = out_channels
W
WenmuZhou 已提交
111
        weight_attr = paddle.nn.initializer.KaimingUniform()
W
WenmuZhou 已提交
112

D
dyning 已提交
113
        self.in2_conv = nn.Conv2D(
W
WenmuZhou 已提交
114 115 116
            in_channels=in_channels[0],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
117
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
118
            bias_attr=False)
D
dyning 已提交
119
        self.in3_conv = nn.Conv2D(
W
WenmuZhou 已提交
120 121 122
            in_channels=in_channels[1],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
123
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
124
            bias_attr=False)
D
dyning 已提交
125
        self.in4_conv = nn.Conv2D(
W
WenmuZhou 已提交
126 127 128
            in_channels=in_channels[2],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
129
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
130
            bias_attr=False)
D
dyning 已提交
131
        self.in5_conv = nn.Conv2D(
W
WenmuZhou 已提交
132 133 134
            in_channels=in_channels[3],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
135
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
136
            bias_attr=False)
D
dyning 已提交
137
        self.p5_conv = nn.Conv2D(
W
WenmuZhou 已提交
138 139 140 141
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
142
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
143
            bias_attr=False)
D
dyning 已提交
144
        self.p4_conv = nn.Conv2D(
W
WenmuZhou 已提交
145 146 147 148
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
149
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
150
            bias_attr=False)
D
dyning 已提交
151
        self.p3_conv = nn.Conv2D(
W
WenmuZhou 已提交
152 153 154 155
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
156
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
157
            bias_attr=False)
D
dyning 已提交
158
        self.p2_conv = nn.Conv2D(
W
WenmuZhou 已提交
159 160 161 162
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
163
            weight_attr=ParamAttr(initializer=weight_attr),
W
WenmuZhou 已提交
164 165 166 167 168 169 170 171 172 173
            bias_attr=False)

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.in5_conv(c5)
        in4 = self.in4_conv(c4)
        in3 = self.in3_conv(c3)
        in2 = self.in2_conv(c2)

W
WenmuZhou 已提交
174 175 176 177 178 179
        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4
W
WenmuZhou 已提交
180 181 182 183 184

        p5 = self.p5_conv(in5)
        p4 = self.p4_conv(out4)
        p3 = self.p3_conv(out3)
        p2 = self.p2_conv(out2)
W
WenmuZhou 已提交
185 186 187
        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
W
WenmuZhou 已提交
188 189 190

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
L
LDOUBLEV 已提交
191 192


L
rename  
LDOUBLEV 已提交
193
class RSELayer(nn.Layer):
L
LDOUBLEV 已提交
194
    def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
L
rename  
LDOUBLEV 已提交
195
        super(RSELayer, self).__init__()
L
LDOUBLEV 已提交
196
        weight_attr = paddle.nn.initializer.KaimingUniform()
L
fix  
LDOUBLEV 已提交
197
        self.out_channels = out_channels
L
LDOUBLEV 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        self.in_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size // 2),
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.se_block = SEModule(self.out_channels)
        self.shortcut = shortcut

    def forward(self, ins):
        x = self.in_conv(ins)
        if self.shortcut:
            out = x + self.se_block(x)
        else:
            out = self.se_block(x)
        return out


L
rename  
LDOUBLEV 已提交
217
class RSEFPN(nn.Layer):
L
fix det  
LDOUBLEV 已提交
218
    def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
L
rename  
LDOUBLEV 已提交
219
        super(RSEFPN, self).__init__()
L
fix det  
LDOUBLEV 已提交
220
        self.out_channels = out_channels
L
LDOUBLEV 已提交
221 222
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
L
LDOUBLEV 已提交
223 224 225

        for i in range(len(in_channels)):
            self.ins_conv.append(
L
LDOUBLEV 已提交
226
                RSELayer(
L
LDOUBLEV 已提交
227 228 229 230 231
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
L
LDOUBLEV 已提交
232
                RSELayer(
L
LDOUBLEV 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                    out_channels,
                    out_channels // 4,
                    kernel_size=3,
                    shortcut=shortcut))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
L
LDOUBLEV 已提交
264 265


L
rename  
LDOUBLEV 已提交
266
class LKPAN(nn.Layer):
L
LDOUBLEV 已提交
267
    def __init__(self, in_channels, out_channels, mode='large', **kwargs):
L
rename  
LDOUBLEV 已提交
268
        super(LKPAN, self).__init__()
L
LDOUBLEV 已提交
269 270 271
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

L
LDOUBLEV 已提交
272 273
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
L
LDOUBLEV 已提交
274
        # pan head
L
LDOUBLEV 已提交
275 276
        self.pan_head_conv = nn.LayerList()
        self.pan_lat_conv = nn.LayerList()
L
LDOUBLEV 已提交
277

L
LDOUBLEV 已提交
278 279 280 281 282 283 284 285 286
        if mode.lower() == 'lite':
            p_layer = DSConv
        elif mode.lower() == 'large':
            p_layer = nn.Conv2D
        else:
            raise ValueError(
                "mode can only be one of ['lite', 'large'], but received {}".
                format(mode))

L
LDOUBLEV 已提交
287 288 289
        for i in range(len(in_channels)):
            self.ins_conv.append(
                nn.Conv2D(
L
LDOUBLEV 已提交
290
                    in_channels=in_channels[i],
L
LDOUBLEV 已提交
291 292 293 294 295 296
                    out_channels=self.out_channels,
                    kernel_size=1,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            self.inp_conv.append(
L
LDOUBLEV 已提交
297
                p_layer(
L
LDOUBLEV 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
                    in_channels=self.out_channels,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            if i > 0:
                self.pan_head_conv.append(
                    nn.Conv2D(
                        in_channels=self.out_channels // 4,
                        out_channels=self.out_channels // 4,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        weight_attr=ParamAttr(initializer=weight_attr),
                        bias_attr=False))
            self.pan_lat_conv.append(
L
LDOUBLEV 已提交
316
                p_layer(
L
LDOUBLEV 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
                    in_channels=self.out_channels // 4,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
L
LDOUBLEV 已提交
334 335 336 337 338 339 340 341 342 343
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        f5 = self.inp_conv[3](in5)
        f4 = self.inp_conv[2](out4)
        f3 = self.inp_conv[1](out3)
        f2 = self.inp_conv[0](out2)

L
LDOUBLEV 已提交
344 345 346
        pan3 = f3 + self.pan_head_conv[0](f2)
        pan4 = f4 + self.pan_head_conv[1](pan3)
        pan5 = f5 + self.pan_head_conv[2](pan4)
L
LDOUBLEV 已提交
347

L
LDOUBLEV 已提交
348 349 350 351
        p2 = self.pan_lat_conv[0](f2)
        p3 = self.pan_lat_conv[1](pan3)
        p4 = self.pan_lat_conv[2](pan4)
        p5 = self.pan_lat_conv[3](pan5)
L
LDOUBLEV 已提交
352 353 354 355 356 357 358

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse