program.py 19.1 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
W
WenmuZhou 已提交
24 25 26 27 28 29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
D
dyning 已提交
32 33
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
L
LDOUBLEV 已提交
34
from ppocr.utils import profiler
D
dyning 已提交
35 36
from ppocr.data import build_dataloader
import numpy as np
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48
        self.add_argument(
            '-p',
            '--profiler_options',
49 50
            type=bool,
            default=False,
L
LDOUBLEV 已提交
51 52
            help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
        )
L
LDOUBLEV 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
81 82
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
83 84


85
def merge_config(config, opts):
L
LDOUBLEV 已提交
86 87 88 89 90 91
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
92
    for key, value in opts.items():
L
LDOUBLEV 已提交
93
        if "." not in key:
94 95
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
96
            else:
97
                config[key] = value
L
LDOUBLEV 已提交
98 99
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
100
            assert (
101
                sub_keys[0] in config
T
tink2123 已提交
102
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
103 104
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
105 106 107 108 109
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
110
    return config
L
LDOUBLEV 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
W
WenmuZhou 已提交
125
        if use_gpu and not paddle.is_compiled_with_cuda():
W
WenmuZhou 已提交
126
            print(err)
L
LDOUBLEV 已提交
127 128 129 130 131
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
132
def train(config,
D
dyning 已提交
133 134 135
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
136 137 138 139 140 141 142 143
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
S
stephon 已提交
144 145
          vdl_writer=None,
          scaler=None):
W
WenmuZhou 已提交
146 147
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
L
LDOUBLEV 已提交
148 149 150 151
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
152
    profiler_options = config['profiler_options']
153 154 155 156
    if profiler_options is True:
        profiler_options = "batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile"
    else:
        profiler_options = None
W
WenmuZhou 已提交
157

D
dyning 已提交
158
    global_step = 0
159 160
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
161 162 163 164
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
165 166 167 168 169
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
170 171 172
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
173 174
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
175 176
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
177 178 179 180
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
181
    model_average = False
W
WenmuZhou 已提交
182 183
    model.train()

T
tink2123 已提交
184
    use_srn = config['Architecture']['algorithm'] == "SRN"
T
tink2123 已提交
185
    extra_input = config['Architecture'][
L
LDOUBLEV 已提交
186
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
187
    try:
L
fix bug  
LDOUBLEV 已提交
188
        model_type = config['Architecture']['model_type']
189
    except:
L
fix bug  
LDOUBLEV 已提交
190
        model_type = None
T
tink2123 已提交
191
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
192

193 194 195 196 197 198 199 200 201 202
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
203

T
tink2123 已提交
204
    for epoch in range(start_epoch, epoch_num + 1):
205 206 207 208 209 210
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)

W
WenmuZhou 已提交
211
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
212
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
213
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
214
            if idx >= max_iter:
W
WenmuZhou 已提交
215 216 217
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
218
            if use_srn:
T
tink2123 已提交
219
                model_average = True
S
stephon 已提交
220

文幕地方's avatar
文幕地方 已提交
221
            train_start = time.time()
S
stephon 已提交
222 223 224 225 226 227 228
            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
T
tink2123 已提交
229
            else:
S
stephon 已提交
230 231
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
232
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
233
                    preds = model(batch)
S
stephon 已提交
234 235
                else:
                    preds = model(images)
236

W
WenmuZhou 已提交
237 238
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
S
stephon 已提交
239 240 241 242 243 244 245 246

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
247
            optimizer.clear_grad()
W
WenmuZhou 已提交
248

文幕地方's avatar
文幕地方 已提交
249
            train_run_cost += time.time() - train_start
250
            global_step += 1
文幕地方's avatar
文幕地方 已提交
251
            total_samples += len(images)
W
WenmuZhou 已提交
252

D
dyning 已提交
253 254
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
255 256 257 258 259 260

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

L
LDOUBLEV 已提交
261
            if cal_metric_during_train:  # only rec and cls need
W
WenmuZhou 已提交
262
                batch = [item.numpy() for item in batch]
L
LDOUBLEV 已提交
263
                if model_type in ['table', 'kie']:
M
MissPenguin 已提交
264 265 266 267
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
268 269
                metric = eval_class.get_metric()
                train_stats.update(metric)
W
WenmuZhou 已提交
270 271 272 273 274 275

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

276 277 278
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
279
                logs = train_stats.log()
280
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: {:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ips: {:.5f}'.format(
W
WenmuZhou 已提交
281
                    epoch, epoch_num, global_step, logs, train_reader_cost /
文幕地方's avatar
文幕地方 已提交
282
                    print_batch_step, (train_reader_cost + train_run_cost) /
283
                    print_batch_step, total_samples / print_batch_step,
文幕地方's avatar
文幕地方 已提交
284
                    total_samples / (train_reader_cost + train_run_cost))
W
WenmuZhou 已提交
285
                logger.info(strs)
286

W
WenmuZhou 已提交
287
                train_reader_cost = 0.0
文幕地方's avatar
文幕地方 已提交
288 289
                train_run_cost = 0.0
                total_samples = 0
W
WenmuZhou 已提交
290 291 292
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
T
tink2123 已提交
293 294 295 296 297 298 299
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
300 301 302 303 304
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
305
                    model_type,
T
tink2123 已提交
306
                    extra_input=extra_input)
L
LDOUBLEV 已提交
307 308 309
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
310 311 312

                # logger metric
                if vdl_writer is not None:
L
LDOUBLEV 已提交
313
                    for k, v in cur_metric.items():
W
WenmuZhou 已提交
314 315
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
L
LDOUBLEV 已提交
316 317
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
318
                        main_indicator]:
L
LDOUBLEV 已提交
319
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
320 321 322 323 324 325
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
326
                        config,
W
WenmuZhou 已提交
327 328 329
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
330 331
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
332
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
333 334 335 336 337 338 339 340
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
341

文幕地方's avatar
文幕地方 已提交
342
            reader_start = time.time()
W
WenmuZhou 已提交
343 344 345 346 347 348
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
349
                config,
W
WenmuZhou 已提交
350 351 352
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
353 354
                epoch=epoch,
                global_step=global_step)
W
WenmuZhou 已提交
355 356 357 358 359 360
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
361
                config,
W
WenmuZhou 已提交
362 363 364
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
365 366
                epoch=epoch,
                global_step=global_step)
L
LDOUBLEV 已提交
367
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
368 369 370 371
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
L
LDOUBLEV 已提交
372 373 374
    return


M
refine  
MissPenguin 已提交
375 376 377 378
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
379
         model_type=None,
T
tink2123 已提交
380
         extra_input=False):
W
WenmuZhou 已提交
381 382 383 384
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
385 386 387 388 389
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
390 391
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
392
        for idx, batch in enumerate(valid_dataloader):
393
            if idx >= max_iter:
W
WenmuZhou 已提交
394
                break
W
fix bug  
WenmuZhou 已提交
395
            images = batch[0]
W
WenmuZhou 已提交
396
            start = time.time()
T
tink2123 已提交
397
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
398
                preds = model(images, data=batch[1:])
399
            elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
400
                preds = model(batch)
X
xiaoting 已提交
401
            else:
L
LDOUBLEV 已提交
402
                preds = model(images)
403 404 405 406 407 408 409

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
410 411 412
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
L
LDOUBLEV 已提交
413
            if model_type in ['table', 'kie']:
414 415 416 417
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
418
            else:
419 420
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
421

W
fix bug  
WenmuZhou 已提交
422
            pbar.update(1)
W
WenmuZhou 已提交
423
            total_frame += len(images)
L
LDOUBLEV 已提交
424 425
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
426

W
fix bug  
WenmuZhou 已提交
427
    pbar.close()
W
WenmuZhou 已提交
428
    model.train()
L
LDOUBLEV 已提交
429 430
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
431

T
tink2123 已提交
432

B
Bin Lu 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


482
def preprocess(is_train=False):
L
licx 已提交
483
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
484
    profiler_options = FLAGS.profiler_options
L
licx 已提交
485
    config = load_config(FLAGS.config)
486
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
487
    profile_dic = {"profiler_options": FLAGS.profiler_options}
488
    config = merge_config(config, profile_dic)
L
licx 已提交
489

W
WenmuZhou 已提交
490 491 492 493 494 495 496 497 498 499 500
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
L
licx 已提交
501 502 503 504 505

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

W
WenmuZhou 已提交
506 507
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
508
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
509
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
510
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM'
W
WenmuZhou 已提交
511
    ]
L
licx 已提交
512

W
WenmuZhou 已提交
513 514
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
D
dyning 已提交
515

D
dyning 已提交
516
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
517

D
dyning 已提交
518 519
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
L
fix bug  
LDOUBLEV 已提交
520
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
521 522 523 524 525 526 527 528 529
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer