quickstart_en.md 11.6 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# PP-Structure Quick Start

M
MissPenguin 已提交
3 4
- [1. Environment Preparation](#1-environment-preparation)
- [2. Quick Use](#2-quick-use)
文幕地方's avatar
文幕地方 已提交
5
  - [2.1 Use by command line](#21-use-by-command-line)
6 7 8 9
    - [2.1.1 image orientation + layout analysis + table recognition](#211-image-orientation--layout-analysis--table-recognition)
    - [2.1.2 layout analysis + table recognition](#212-layout-analysis--table-recognition)
    - [2.1.3 layout analysis](#213-layout-analysis)
    - [2.1.4 table recognition](#214-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
10
    - [2.1.5 Key Information Extraction](#215-Key-Information-Extraction)
A
an1018 已提交
11
    - [2.1.6 layout recovery](#216-layout-recovery)
M
MissPenguin 已提交
12
  - [2.2 Use by python script](#22-use-by-python-script)
13 14 15 16
    - [2.2.1 image orientation + layout analysis + table recognition](#221-image-orientation--layout-analysis--table-recognition)
    - [2.2.2 layout analysis + table recognition](#222-layout-analysis--table-recognition)
    - [2.2.3 layout analysis](#223-layout-analysis)
    - [2.2.4 table recognition](#224-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
17
    - [2.2.5 Key Information Extraction](#225-Key-Information-Extraction)
A
an1018 已提交
18
    - [2.2.6 layout recovery](#226-layout-recovery)  
文幕地方's avatar
文幕地方 已提交
19 20
  - [2.3 Result description](#23-result-description)
    - [2.3.1 layout analysis + table recognition](#231-layout-analysis--table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
21
    - [2.3.2 Key Information Extraction](#232-Key-Information-Extraction)
文幕地方's avatar
文幕地方 已提交
22
  - [2.4 Parameter Description](#24-parameter-description)
M
MissPenguin 已提交
23
- [3. Summary](#3-summary)
M
update  
MissPenguin 已提交
24 25 26


<a name="1"></a>
M
MissPenguin 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
## 1. Environment Preparation
### 1.1 Install PaddlePaddle

> If you do not have a Python environment, please refer to [Environment Preparation](./environment_en.md).

- If you have CUDA 9 or CUDA 10 installed on your machine, please run the following command to install

  ```bash
  python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
  ```

- If you have no available GPU on your machine, please run the following command to install the CPU version

  ```bash
  python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  ```

For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.

### 1.2 Install PaddleOCR Whl Package
M
update  
MissPenguin 已提交
47 48

```bash
A
an1018 已提交
49
# Install paddleocr, version 2.6 is recommended
文幕地方's avatar
文幕地方 已提交
50
pip3 install "paddleocr>=2.6.0.3"
A
an1018 已提交
51

A
an1018 已提交
52
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
文幕地方's avatar
文幕地方 已提交
53
pip3 install paddleclas>=2.4.3
M
update  
MissPenguin 已提交
54 55 56
```

<a name="2"></a>
A
an1018 已提交
57

M
MissPenguin 已提交
58
## 2. Quick Use
M
update  
MissPenguin 已提交
59 60

<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
61
### 2.1 Use by command line
62

M
update  
MissPenguin 已提交
63
<a name="211"></a>
64
#### 2.1.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
65
```bash
M
MissPenguin 已提交
66
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --image_orientation=true
M
update  
MissPenguin 已提交
67 68 69
```

<a name="212"></a>
70
#### 2.1.2 layout analysis + table recognition
71
```bash
M
MissPenguin 已提交
72
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure
73 74 75
```

<a name="213"></a>
76
#### 2.1.3 layout analysis
77
```bash
M
MissPenguin 已提交
78
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
79 80 81
```

<a name="214"></a>
82 83
#### 2.1.4 table recognition
```bash
M
MissPenguin 已提交
84
paddleocr --image_dir=ppstructure/docs/table/table.jpg --type=structure --layout=false
85 86 87
```

<a name="215"></a>
88

littletomatodonkey's avatar
littletomatodonkey 已提交
89
#### 2.1.5 Key Information Extraction
M
update  
MissPenguin 已提交
90

文幕地方's avatar
文幕地方 已提交
91
Key information extraction does not currently support use by the whl package. For detailed usage tutorials, please refer to: [inference document](./inference_en.md).
M
update  
MissPenguin 已提交
92

A
an1018 已提交
93
<a name="216"></a>
qq_25193841's avatar
qq_25193841 已提交
94
#### 2.1.6 layout recovery(PDF to Word)
A
an1018 已提交
95

qq_25193841's avatar
qq_25193841 已提交
96
Two layout recovery methods are provided, For detailed usage tutorials, please refer to: [Layout Recovery](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/recovery/README.md).
A
an1018 已提交
97 98 99 100 101 102 103 104

- PDF parse
- OCR

Recovery by using PDF parse (only support pdf as input):

```bash
paddleocr --image_dir=ppstructure/recovery/UnrealText.pdf --type=structure --recovery=true --use_pdf2docx_api=true
A
an1018 已提交
105
```
A
an1018 已提交
106 107 108 109

Recovery by using OCR:

```bash
110
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --recovery=true --lang='en'
A
an1018 已提交
111 112
```

M
update  
MissPenguin 已提交
113
<a name="22"></a>
M
MissPenguin 已提交
114
### 2.2 Use by python script
M
update  
MissPenguin 已提交
115 116

<a name="221"></a>
117
#### 2.2.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
118 119 120 121 122 123

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

124
table_engine = PPStructure(show_log=True, image_orientation=True)
M
update  
MissPenguin 已提交
125

126
save_folder = './output'
M
MissPenguin 已提交
127
img_path = 'ppstructure/docs/table/1.png'
M
update  
MissPenguin 已提交
128 129 130 131 132 133 134 135 136 137
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

M
MissPenguin 已提交
138
font_path = 'doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
M
update  
MissPenguin 已提交
139 140 141 142 143 144 145
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="222"></a>
146 147 148 149 150 151 152 153 154 155
#### 2.2.2 layout analysis + table recognition

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output'
M
MissPenguin 已提交
156
img_path = 'ppstructure/docs/table/1.png'
157 158 159 160 161 162 163 164 165 166
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

M
MissPenguin 已提交
167
font_path = 'doc/fonts/simfang.ttf' # font provieded in PaddleOCR
168 169 170 171 172 173 174 175
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="223"></a>
#### 2.2.3 layout analysis
176 177 178 179 180 181 182 183 184

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(table=False, ocr=False, show_log=True)

save_folder = './output'
M
MissPenguin 已提交
185
img_path = 'ppstructure/docs/table/1.png'
186 187 188 189 190 191 192 193 194
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

195 196
<a name="224"></a>
#### 2.2.4 table recognition
197 198 199 200 201 202 203 204 205

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
M
MissPenguin 已提交
206
img_path = 'ppstructure/docs/table/table.jpg'
207 208 209 210 211 212 213 214 215
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

216
<a name="225"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
217
#### 2.2.5 Key Information Extraction
M
update  
MissPenguin 已提交
218

M
MissPenguin 已提交
219
Key information extraction does not currently support use by the whl package. For detailed usage tutorials, please refer to: [Key Information Extraction](../kie/README.md).
M
update  
MissPenguin 已提交
220

A
an1018 已提交
221 222 223 224 225 226 227
<a name="226"></a>
#### 2.2.6 layout recovery

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
A
an1018 已提交
228
from paddleocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
A
an1018 已提交
229

A
an1018 已提交
230 231 232 233
# Chinese image
table_engine = PPStructure(recovery=True)
# English image
# table_engine = PPStructure(recovery=True, lang='en')
A
an1018 已提交
234 235

save_folder = './output'
A
an1018 已提交
236
img_path = 'ppstructure/docs/table/1.png'
A
an1018 已提交
237 238 239 240 241 242 243 244 245
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

h, w, _ = img.shape
A
an1018 已提交
246 247
res = sorted_layout_boxes(result, w)
convert_info_docx(img, res, save_folder, os.path.basename(img_path).split('.')[0])
A
an1018 已提交
248 249
```

M
update  
MissPenguin 已提交
250
<a name="23"></a>
文幕地方's avatar
文幕地方 已提交
251 252 253
### 2.3 Result description

The return of PP-Structure is a list of dicts, the example is as follows:
M
update  
MissPenguin 已提交
254 255

<a name="231"></a>
文幕地方's avatar
文幕地方 已提交
256
#### 2.3.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
257 258 259 260 261 262 263 264 265
```shell
[
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
文幕地方's avatar
文幕地方 已提交
266
Each field in dict is described as follows:
M
update  
MissPenguin 已提交
267

268 269
| field | description  |
| --- |---|
M
MissPenguin 已提交
270 271
|type| Type of image area. |
|bbox| The coordinates of the image area in the original image, respectively [upper left corner x, upper left corner y, lower right corner x, lower right corner y]. |
文幕地方's avatar
文幕地方 已提交
272
|res| OCR or table recognition result of the image area. <br> table: a dict with field descriptions as follows: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: html str of table.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; In the code usage mode, set return_ocr_result_in_table=True whrn call can get the detection and recognition results of each text in the table area, corresponding to the following fields: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: text detection boxes.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: text recognition results.<br> OCR: A tuple containing the detection boxes and recognition results of each single text. |
M
update  
MissPenguin 已提交
273

文幕地方's avatar
文幕地方 已提交
274
After the recognition is completed, each image will have a directory with the same name under the directory specified by the `output` field. Each table in the image will be stored as an excel, and the picture area will be cropped and saved. The filename of  excel and picture is their coordinates in the image.
M
update  
MissPenguin 已提交
275 276 277
  ```
  /output/table/1/
    └─ res.txt
文幕地方's avatar
文幕地方 已提交
278 279 280
    └─ [454, 360, 824, 658].xlsx        table recognition result
    └─ [16, 2, 828, 305].jpg            picture in Image
    └─ [17, 361, 404, 711].xlsx        table recognition result
M
update  
MissPenguin 已提交
281 282 283
  ```

<a name="232"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
284
#### 2.3.2 Key Information Extraction
M
update  
MissPenguin 已提交
285

littletomatodonkey's avatar
littletomatodonkey 已提交
286
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
287 288

<a name="24"></a>
文幕地方's avatar
文幕地方 已提交
289 290
### 2.4 Parameter Description

291 292 293 294 295 296 297 298 299 300 301
| field | description | default |
|---|---|---|
| output | result save path | ./output/table |
| table_max_len | long side of the image resize in table structure model | 488 |
| table_model_dir | Table structure model inference model path| None |
| table_char_dict_path | The dictionary path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt  |
| merge_no_span_structure | In the table recognition model, whether to merge '\<td>' and '\</td>' | False |
| layout_model_dir  | Layout analysis model inference model path| None |
| layout_dict_path  | The dictionary path of layout analysis model| ../ppocr/utils/dict/layout_publaynet_dict.txt |
| layout_score_threshold  | The box threshold path of layout analysis model| 0.5|
| layout_nms_threshold  | The nms threshold path of layout analysis model| 0.5|
302
| kie_algorithm  | kie model algorithm| LayoutXLM|
303 304
| ser_model_dir  | Ser model inference model path| None|
| ser_dict_path  | The dictionary path of Ser model| ../train_data/XFUND/class_list_xfun.txt|
305
| mode | structure or kie  | structure   |
306 307 308 309 310
| image_orientation | Whether to perform image orientation classification in forward  | False   |
| layout | Whether to perform layout analysis in forward  | True   |
| table  | Whether to perform table recognition in forward  | True   |
| ocr    | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False| True |
| recovery    | Whether to perform layout recovery in forward| False |
A
an1018 已提交
311
| save_pdf    | Whether to convert docx to pdf when recovery| False |
312 313
| structure_version |  Structure version, optional PP-structure and PP-structurev2  | PP-structure |

文幕地方's avatar
文幕地方 已提交
314
Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)
M
MissPenguin 已提交
315 316 317 318

<a name="3"></a>
## 3. Summary

A
an1018 已提交
319
Through the content in this section, you can master the use of PP-Structure related functions through PaddleOCR whl package. Please refer to [documentation tutorial](../../README.md) for more detailed usage tutorials including model training, inference and deployment, etc.