quickstart_en.md 10.9 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# PP-Structure Quick Start

文幕地方's avatar
文幕地方 已提交
3 4 5
- [1. Install package](#1-install-package)
- [2. Use](#2-use)
  - [2.1 Use by command line](#21-use-by-command-line)
6 7 8 9
    - [2.1.1 image orientation + layout analysis + table recognition](#211-image-orientation--layout-analysis--table-recognition)
    - [2.1.2 layout analysis + table recognition](#212-layout-analysis--table-recognition)
    - [2.1.3 layout analysis](#213-layout-analysis)
    - [2.1.4 table recognition](#214-table-recognition)
10
    - [2.1.5 DocVQA](#215-dockie)
A
an1018 已提交
11
    - [2.1.6 layout recovery](#216-layout-recovery)
文幕地方's avatar
文幕地方 已提交
12
  - [2.2 Use by code](#22-use-by-code)
13 14 15 16
    - [2.2.1 image orientation + layout analysis + table recognition](#221-image-orientation--layout-analysis--table-recognition)
    - [2.2.2 layout analysis + table recognition](#222-layout-analysis--table-recognition)
    - [2.2.3 layout analysis](#223-layout-analysis)
    - [2.2.4 table recognition](#224-table-recognition)
17
    - [2.2.5 DocVQA](#225-dockie)
A
an1018 已提交
18
    - [2.2.6 layout recovery](#226-layout-recovery)  
文幕地方's avatar
文幕地方 已提交
19 20
  - [2.3 Result description](#23-result-description)
    - [2.3.1 layout analysis + table recognition](#231-layout-analysis--table-recognition)
21
    - [2.3.2 DocVQA](#232-dockie)
文幕地方's avatar
文幕地方 已提交
22
  - [2.4 Parameter Description](#24-parameter-description)
M
update  
MissPenguin 已提交
23 24 25


<a name="1"></a>
文幕地方's avatar
文幕地方 已提交
26
## 1. Install package
M
update  
MissPenguin 已提交
27 28

```bash
A
an1018 已提交
29 30
# Install paddleocr, version 2.6 is recommended
pip3 install "paddleocr>=2.6"
文幕地方's avatar
文幕地方 已提交
31
# Install the DocVQA dependency package paddlenlp (if you do not use the DocVQA, you can skip it)
A
an1018 已提交
32 33 34
pip3 install paddlenlp
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
pip3 install paddleclas
M
update  
MissPenguin 已提交
35 36 37 38

```

<a name="2"></a>
文幕地方's avatar
文幕地方 已提交
39
## 2. Use
M
update  
MissPenguin 已提交
40 41

<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
42
### 2.1 Use by command line
43

M
update  
MissPenguin 已提交
44
<a name="211"></a>
45
#### 2.1.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
46
```bash
47
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --image_orientation=true
M
update  
MissPenguin 已提交
48 49 50
```

<a name="212"></a>
51
#### 2.1.2 layout analysis + table recognition
52
```bash
53
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure
54 55 56
```

<a name="213"></a>
57
#### 2.1.3 layout analysis
58
```bash
59
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
60 61 62
```

<a name="214"></a>
63 64 65 66 67 68 69
#### 2.1.4 table recognition
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structure --layout=false
```

<a name="215"></a>
#### 2.1.5 DocVQA
M
update  
MissPenguin 已提交
70

71
Please refer to: [Documentation Visual Q&A](../kie/README.md) .
M
update  
MissPenguin 已提交
72

A
an1018 已提交
73 74 75 76 77 78
<a name="216"></a>
#### 2.1.6 layout recovery
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true
```

M
update  
MissPenguin 已提交
79
<a name="22"></a>
文幕地方's avatar
文幕地方 已提交
80
### 2.2 Use by code
M
update  
MissPenguin 已提交
81 82

<a name="221"></a>
83
#### 2.2.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
84 85 86 87 88 89

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

90
table_engine = PPStructure(show_log=True, image_orientation=True)
M
update  
MissPenguin 已提交
91

92 93
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
M
update  
MissPenguin 已提交
94 95 96 97 98 99 100 101 102 103
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

104
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
M
update  
MissPenguin 已提交
105 106 107 108 109 110 111
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="222"></a>
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#### 2.2.2 layout analysis + table recognition

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="223"></a>
#### 2.2.3 layout analysis
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(table=False, ocr=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

161 162
<a name="224"></a>
#### 2.2.4 table recognition
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/table.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

182 183
<a name="225"></a>
#### 2.2.5 DocVQA
M
update  
MissPenguin 已提交
184

185
Please refer to: [Documentation Visual Q&A](../kie/README.md) .
M
update  
MissPenguin 已提交
186

A
an1018 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
<a name="226"></a>
#### 2.2.6 layout recovery

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
from paddelocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

h, w, _ = img.shape
res = sorted_layout_boxes(res, w)
convert_info_docx(img, result, save_folder, os.path.basename(img_path).split('.')[0])
```

M
update  
MissPenguin 已提交
213
<a name="23"></a>
文幕地方's avatar
文幕地方 已提交
214 215 216
### 2.3 Result description

The return of PP-Structure is a list of dicts, the example is as follows:
M
update  
MissPenguin 已提交
217 218

<a name="231"></a>
文幕地方's avatar
文幕地方 已提交
219
#### 2.3.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
220 221 222 223 224 225 226 227 228
```shell
[
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
文幕地方's avatar
文幕地方 已提交
229
Each field in dict is described as follows:
M
update  
MissPenguin 已提交
230

231 232
| field | description  |
| --- |---|
文幕地方's avatar
文幕地方 已提交
233 234 235
|type| Type of image area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|bbox| The coordinates of the image area in the original image, respectively [upper left corner x, upper left corner y, lower right corner x, lower right corner y].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|res| OCR or table recognition result of the image area. <br> table: a dict with field descriptions as follows: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: html str of table.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; In the code usage mode, set return_ocr_result_in_table=True whrn call can get the detection and recognition results of each text in the table area, corresponding to the following fields: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: text detection boxes.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: text recognition results.<br> OCR: A tuple containing the detection boxes and recognition results of each single text. |
M
update  
MissPenguin 已提交
236

文幕地方's avatar
文幕地方 已提交
237
After the recognition is completed, each image will have a directory with the same name under the directory specified by the `output` field. Each table in the image will be stored as an excel, and the picture area will be cropped and saved. The filename of  excel and picture is their coordinates in the image.
M
update  
MissPenguin 已提交
238 239 240
  ```
  /output/table/1/
    └─ res.txt
文幕地方's avatar
文幕地方 已提交
241 242 243
    └─ [454, 360, 824, 658].xlsx        table recognition result
    └─ [16, 2, 828, 305].jpg            picture in Image
    └─ [17, 361, 404, 711].xlsx        table recognition result
M
update  
MissPenguin 已提交
244 245 246 247 248
  ```

<a name="232"></a>
#### 2.3.2 DocVQA

249
Please refer to: [Documentation Visual Q&A](../kie/README.md) .
M
update  
MissPenguin 已提交
250 251

<a name="24"></a>
文幕地方's avatar
文幕地方 已提交
252 253
### 2.4 Parameter Description

254 255 256 257 258 259 260 261 262 263 264
| field | description | default |
|---|---|---|
| output | result save path | ./output/table |
| table_max_len | long side of the image resize in table structure model | 488 |
| table_model_dir | Table structure model inference model path| None |
| table_char_dict_path | The dictionary path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt  |
| merge_no_span_structure | In the table recognition model, whether to merge '\<td>' and '\</td>' | False |
| layout_model_dir  | Layout analysis model inference model path| None |
| layout_dict_path  | The dictionary path of layout analysis model| ../ppocr/utils/dict/layout_publaynet_dict.txt |
| layout_score_threshold  | The box threshold path of layout analysis model| 0.5|
| layout_nms_threshold  | The nms threshold path of layout analysis model| 0.5|
265
| kie_algorithm  | kie model algorithm| LayoutXLM|
266 267
| ser_model_dir  | Ser model inference model path| None|
| ser_dict_path  | The dictionary path of Ser model| ../train_data/XFUND/class_list_xfun.txt|
268
| mode | structure or kie  | structure   |
269 270 271 272 273
| image_orientation | Whether to perform image orientation classification in forward  | False   |
| layout | Whether to perform layout analysis in forward  | True   |
| table  | Whether to perform table recognition in forward  | True   |
| ocr    | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False| True |
| recovery    | Whether to perform layout recovery in forward| False |
A
an1018 已提交
274
| save_pdf    | Whether to convert docx to pdf when recovery| False |
275 276
| structure_version |  Structure version, optional PP-structure and PP-structurev2  | PP-structure |

文幕地方's avatar
文幕地方 已提交
277
Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)