quickstart_en.md 11.8 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# PP-Structure Quick Start

M
MissPenguin 已提交
3 4
- [1. Environment Preparation](#1-environment-preparation)
- [2. Quick Use](#2-quick-use)
文幕地方's avatar
文幕地方 已提交
5
  - [2.1 Use by command line](#21-use-by-command-line)
6 7 8 9
    - [2.1.1 image orientation + layout analysis + table recognition](#211-image-orientation--layout-analysis--table-recognition)
    - [2.1.2 layout analysis + table recognition](#212-layout-analysis--table-recognition)
    - [2.1.3 layout analysis](#213-layout-analysis)
    - [2.1.4 table recognition](#214-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
10
    - [2.1.5 Key Information Extraction](#215-Key-Information-Extraction)
A
an1018 已提交
11
    - [2.1.6 layout recovery](#216-layout-recovery)
M
MissPenguin 已提交
12
  - [2.2 Use by python script](#22-use-by-python-script)
13 14 15 16
    - [2.2.1 image orientation + layout analysis + table recognition](#221-image-orientation--layout-analysis--table-recognition)
    - [2.2.2 layout analysis + table recognition](#222-layout-analysis--table-recognition)
    - [2.2.3 layout analysis](#223-layout-analysis)
    - [2.2.4 table recognition](#224-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
17
    - [2.2.5 Key Information Extraction](#225-Key-Information-Extraction)
A
an1018 已提交
18
    - [2.2.6 layout recovery](#226-layout-recovery)  
文幕地方's avatar
文幕地方 已提交
19 20
  - [2.3 Result description](#23-result-description)
    - [2.3.1 layout analysis + table recognition](#231-layout-analysis--table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
21
    - [2.3.2 Key Information Extraction](#232-Key-Information-Extraction)
文幕地方's avatar
文幕地方 已提交
22
  - [2.4 Parameter Description](#24-parameter-description)
M
MissPenguin 已提交
23
- [3. Summary](#3-summary)
M
update  
MissPenguin 已提交
24 25 26


<a name="1"></a>
M
MissPenguin 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
## 1. Environment Preparation
### 1.1 Install PaddlePaddle

> If you do not have a Python environment, please refer to [Environment Preparation](./environment_en.md).

- If you have CUDA 9 or CUDA 10 installed on your machine, please run the following command to install

  ```bash
  python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
  ```

- If you have no available GPU on your machine, please run the following command to install the CPU version

  ```bash
  python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  ```

For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.

### 1.2 Install PaddleOCR Whl Package
M
update  
MissPenguin 已提交
47 48

```bash
A
an1018 已提交
49 50
# Install paddleocr, version 2.6 is recommended
pip3 install "paddleocr>=2.6"
A
an1018 已提交
51

A
an1018 已提交
52
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
文幕地方's avatar
文幕地方 已提交
53
pip3 install paddleclas>=2.4.3
A
an1018 已提交
54 55

# Install the KIE dependency packages (if you do not use the KIE, you can skip it)
M
MissPenguin 已提交
56
pip3 install -r kie/requirements.txt
A
an1018 已提交
57 58

# Install the layout recovery dependency packages (if you do not use the layout recovery, you can skip it)
59
pip3 install -r recovery/requirements.txt
M
update  
MissPenguin 已提交
60 61 62
```

<a name="2"></a>
A
an1018 已提交
63

M
MissPenguin 已提交
64
## 2. Quick Use
M
update  
MissPenguin 已提交
65 66

<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
67
### 2.1 Use by command line
68

M
update  
MissPenguin 已提交
69
<a name="211"></a>
70
#### 2.1.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
71
```bash
M
MissPenguin 已提交
72
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --image_orientation=true
M
update  
MissPenguin 已提交
73 74 75
```

<a name="212"></a>
76
#### 2.1.2 layout analysis + table recognition
77
```bash
M
MissPenguin 已提交
78
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure
79 80 81
```

<a name="213"></a>
82
#### 2.1.3 layout analysis
83
```bash
M
MissPenguin 已提交
84
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
85 86 87
```

<a name="214"></a>
88 89
#### 2.1.4 table recognition
```bash
M
MissPenguin 已提交
90
paddleocr --image_dir=ppstructure/docs/table/table.jpg --type=structure --layout=false
91 92 93
```

<a name="215"></a>
94

littletomatodonkey's avatar
littletomatodonkey 已提交
95
#### 2.1.5 Key Information Extraction
M
update  
MissPenguin 已提交
96

文幕地方's avatar
文幕地方 已提交
97
Key information extraction does not currently support use by the whl package. For detailed usage tutorials, please refer to: [inference document](./inference_en.md).
M
update  
MissPenguin 已提交
98

A
an1018 已提交
99 100
<a name="216"></a>
#### 2.1.6 layout recovery
A
an1018 已提交
101 102 103 104 105 106 107 108 109 110

Two layout recovery methods are provided,  For detailed usage tutorials, please refer to: [Layout Recovery](../recovery/README.md).

- PDF parse
- OCR

Recovery by using PDF parse (only support pdf as input):

```bash
paddleocr --image_dir=ppstructure/recovery/UnrealText.pdf --type=structure --recovery=true --use_pdf2docx_api=true
A
an1018 已提交
111
```
A
an1018 已提交
112 113 114 115

Recovery by using OCR:

```bash
116
paddleocr --image_dir=ppstructure/docs/table/1.png --type=structure --recovery=true --lang='en'
A
an1018 已提交
117 118
```

M
update  
MissPenguin 已提交
119
<a name="22"></a>
M
MissPenguin 已提交
120
### 2.2 Use by python script
M
update  
MissPenguin 已提交
121 122

<a name="221"></a>
123
#### 2.2.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
124 125 126 127 128 129

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

130
table_engine = PPStructure(show_log=True, image_orientation=True)
M
update  
MissPenguin 已提交
131

132
save_folder = './output'
M
MissPenguin 已提交
133
img_path = 'ppstructure/docs/table/1.png'
M
update  
MissPenguin 已提交
134 135 136 137 138 139 140 141 142 143
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

M
MissPenguin 已提交
144
font_path = 'doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
M
update  
MissPenguin 已提交
145 146 147 148 149 150 151
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="222"></a>
152 153 154 155 156 157 158 159 160 161
#### 2.2.2 layout analysis + table recognition

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output'
M
MissPenguin 已提交
162
img_path = 'ppstructure/docs/table/1.png'
163 164 165 166 167 168 169 170 171 172
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

M
MissPenguin 已提交
173
font_path = 'doc/fonts/simfang.ttf' # font provieded in PaddleOCR
174 175 176 177 178 179 180 181
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="223"></a>
#### 2.2.3 layout analysis
182 183 184 185 186 187 188 189 190

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(table=False, ocr=False, show_log=True)

save_folder = './output'
M
MissPenguin 已提交
191
img_path = 'ppstructure/docs/table/1.png'
192 193 194 195 196 197 198 199 200
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

201 202
<a name="224"></a>
#### 2.2.4 table recognition
203 204 205 206 207 208 209 210 211

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
M
MissPenguin 已提交
212
img_path = 'ppstructure/docs/table/table.jpg'
213 214 215 216 217 218 219 220 221
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

222
<a name="225"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
223
#### 2.2.5 Key Information Extraction
M
update  
MissPenguin 已提交
224

M
MissPenguin 已提交
225
Key information extraction does not currently support use by the whl package. For detailed usage tutorials, please refer to: [Key Information Extraction](../kie/README.md).
M
update  
MissPenguin 已提交
226

A
an1018 已提交
227 228 229 230 231 232 233
<a name="226"></a>
#### 2.2.6 layout recovery

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
A
an1018 已提交
234
from paddleocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
A
an1018 已提交
235

A
an1018 已提交
236 237 238 239
# Chinese image
table_engine = PPStructure(recovery=True)
# English image
# table_engine = PPStructure(recovery=True, lang='en')
A
an1018 已提交
240 241

save_folder = './output'
A
an1018 已提交
242
img_path = 'ppstructure/docs/table/1.png'
A
an1018 已提交
243 244 245 246 247 248 249 250 251
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

h, w, _ = img.shape
A
an1018 已提交
252 253
res = sorted_layout_boxes(result, w)
convert_info_docx(img, res, save_folder, os.path.basename(img_path).split('.')[0])
A
an1018 已提交
254 255
```

M
update  
MissPenguin 已提交
256
<a name="23"></a>
文幕地方's avatar
文幕地方 已提交
257 258 259
### 2.3 Result description

The return of PP-Structure is a list of dicts, the example is as follows:
M
update  
MissPenguin 已提交
260 261

<a name="231"></a>
文幕地方's avatar
文幕地方 已提交
262
#### 2.3.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
263 264 265 266 267 268 269 270 271
```shell
[
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
文幕地方's avatar
文幕地方 已提交
272
Each field in dict is described as follows:
M
update  
MissPenguin 已提交
273

274 275
| field | description  |
| --- |---|
M
MissPenguin 已提交
276 277
|type| Type of image area. |
|bbox| The coordinates of the image area in the original image, respectively [upper left corner x, upper left corner y, lower right corner x, lower right corner y]. |
文幕地方's avatar
文幕地方 已提交
278
|res| OCR or table recognition result of the image area. <br> table: a dict with field descriptions as follows: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: html str of table.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; In the code usage mode, set return_ocr_result_in_table=True whrn call can get the detection and recognition results of each text in the table area, corresponding to the following fields: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: text detection boxes.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: text recognition results.<br> OCR: A tuple containing the detection boxes and recognition results of each single text. |
M
update  
MissPenguin 已提交
279

文幕地方's avatar
文幕地方 已提交
280
After the recognition is completed, each image will have a directory with the same name under the directory specified by the `output` field. Each table in the image will be stored as an excel, and the picture area will be cropped and saved. The filename of  excel and picture is their coordinates in the image.
M
update  
MissPenguin 已提交
281 282 283
  ```
  /output/table/1/
    └─ res.txt
文幕地方's avatar
文幕地方 已提交
284 285 286
    └─ [454, 360, 824, 658].xlsx        table recognition result
    └─ [16, 2, 828, 305].jpg            picture in Image
    └─ [17, 361, 404, 711].xlsx        table recognition result
M
update  
MissPenguin 已提交
287 288 289
  ```

<a name="232"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
290
#### 2.3.2 Key Information Extraction
M
update  
MissPenguin 已提交
291

littletomatodonkey's avatar
littletomatodonkey 已提交
292
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
293 294

<a name="24"></a>
文幕地方's avatar
文幕地方 已提交
295 296
### 2.4 Parameter Description

297 298 299 300 301 302 303 304 305 306 307
| field | description | default |
|---|---|---|
| output | result save path | ./output/table |
| table_max_len | long side of the image resize in table structure model | 488 |
| table_model_dir | Table structure model inference model path| None |
| table_char_dict_path | The dictionary path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt  |
| merge_no_span_structure | In the table recognition model, whether to merge '\<td>' and '\</td>' | False |
| layout_model_dir  | Layout analysis model inference model path| None |
| layout_dict_path  | The dictionary path of layout analysis model| ../ppocr/utils/dict/layout_publaynet_dict.txt |
| layout_score_threshold  | The box threshold path of layout analysis model| 0.5|
| layout_nms_threshold  | The nms threshold path of layout analysis model| 0.5|
308
| kie_algorithm  | kie model algorithm| LayoutXLM|
309 310
| ser_model_dir  | Ser model inference model path| None|
| ser_dict_path  | The dictionary path of Ser model| ../train_data/XFUND/class_list_xfun.txt|
311
| mode | structure or kie  | structure   |
312 313 314 315 316
| image_orientation | Whether to perform image orientation classification in forward  | False   |
| layout | Whether to perform layout analysis in forward  | True   |
| table  | Whether to perform table recognition in forward  | True   |
| ocr    | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False| True |
| recovery    | Whether to perform layout recovery in forward| False |
A
an1018 已提交
317
| save_pdf    | Whether to convert docx to pdf when recovery| False |
318 319
| structure_version |  Structure version, optional PP-structure and PP-structurev2  | PP-structure |

文幕地方's avatar
文幕地方 已提交
320
Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)
M
MissPenguin 已提交
321 322 323 324

<a name="3"></a>
## 3. Summary

A
an1018 已提交
325
Through the content in this section, you can master the use of PP-Structure related functions through PaddleOCR whl package. Please refer to [documentation tutorial](../../README.md) for more detailed usage tutorials including model training, inference and deployment, etc.