gaussian_random_op.cc 3.4 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Q
qijun 已提交
12 13
#include <random>
#include "paddle/framework/op_registry.h"
D
dongzhihong 已提交
14 15 16

namespace paddle {
namespace operators {
D
dongzhihong 已提交
17

Q
qijun 已提交
18
template <typename T>
Y
Yu Yang 已提交
19
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
20 21
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
22 23
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
24 25 26
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
27
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
28 29 30 31 32 33
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
34
    int64_t size = tensor->numel();
Q
qijun 已提交
35
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
36 37 38 39 40
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
41
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
42 43
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
44

D
dongzhihong 已提交
45
 protected:
46
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
47 48 49
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of GaussianRandomOp should not be null.");
    auto dims = ctx->Attrs().Get<std::vector<int>>("dims");
Q
qijun 已提交
50 51
    std::vector<int64_t> temp;
    temp.reserve(dims.size());
Q
qijun 已提交
52 53 54
    for (auto dim : dims) {
      temp.push_back(static_cast<int64_t>(dim));
    }
55 56
    PADDLE_ENFORCE(dims.size() > 0UL,
                   "dims can be one int or array. dims must be set.");
Q
Qiao Longfei 已提交
57
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
D
dongzhihong 已提交
58
  }
Y
Yu Yang 已提交
59 60 61 62 63

  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return static_cast<framework::DataType>(Attr<int>("data_type"));
  }
D
dongzhihong 已提交
64 65
};

D
dongzhihong 已提交
66
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
67
 public:
D
dongzhihong 已提交
68 69
  GaussianRandomOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
D
dongzhihong 已提交
70 71 72
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
    AddOutput("Out", "output matrix of random op");
    AddComment(R"DOC(
73 74
GaussianRandom operator.
Use to initialize tensor with gaussian random generator.
D
dongzhihong 已提交
75
)DOC");
76 77

    AddAttr<std::vector<int>>("dims", "The dimension of random tensor.");
Q
qijun 已提交
78 79 80 81 82 83
    AddAttr<float>("mean", "mean of random tensor.").SetDefault(.0f);
    AddAttr<float>("std", "std of random tensor.").SetDefault(1.0f);
    AddAttr<int>("seed",
                 "Random seed of generator."
                 "0 means use system wide seed")
        .SetDefault(0);
Y
Yu Yang 已提交
84 85
    AddAttr<int>("data_type", "output data type")
        .SetDefault(framework::DataType::FP32);
D
dongzhihong 已提交
86 87 88 89 90 91
  }
};

}  // namespace operators
}  // namespace paddle

92
namespace ops = paddle::operators;
F
fengjiayi 已提交
93 94
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
Q
qijun 已提交
95
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>);