gaussian_random_op.cc 3.2 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dongzhihong 已提交
15
#include "paddle/operators/gaussian_random_op.h"
D
dongzhihong 已提交
16
#include "glog/logging.h"
D
dongzhihong 已提交
17 18 19 20
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
D
dongzhihong 已提交
21

D
dongzhihong 已提交
22 23 24
template <typename T>
class GaussianRandomOpKernel<platform::CPUPlace, T>
    : public framework::OpKernel {
D
dongzhihong 已提交
25
 public:
D
dongzhihong 已提交
26
  void Compute(const framework::ExecutionContext& context) const override {
D
dongzhihong 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    auto mean = context.op_.GetAttr<T>("mean");
    auto std = context.op_.GetAttr<T>("std");
    auto* output = context.Output(0)->GetMutable<framework::Tensor>();
    T* r = output->mutable_data<T>(context.GetPlace());
    auto ctx =
        static_cast<const platform::CPUDeviceContext*>(context.device_context_);
    // generator need to modify context
    auto g = const_cast<platform::CPUDeviceContext*>(ctx)->RandGenerator();
    std::normal_distribution<T> distribution(mean, std);
    for (int i = 0; i < framework::product(output->dims()); ++i) {
      r[i] = distribution(g);
    }
  }
};

class GaussianRandomOp : public framework::OperatorWithKernel {
D
dongzhihong 已提交
43
 protected:
D
dongzhihong 已提交
44
  void InferShape(const framework::InferShapeContext& ctx) const override {
D
dongzhihong 已提交
45 46
    PADDLE_ENFORCE(inputs.size() == 0, "Input size of RandomOp must be zero.");
    PADDLE_ENFORCE(outputs.size() == 1, "Output size of RandomOp must be one.");
D
dongzhihong 已提交
47 48
    PADDLE_ENFORCE(outputs[0] != nullptr,
                   "Outputs of RandomOp must all be set.");
D
dongzhihong 已提交
49 50 51
    auto* tensor = ctx.Output<Tensor>(0);
    auto dims = GetAttr(std::vector<int>("shape"));
    tensor->Resize(framework::make_ddim(dims));
D
dongzhihong 已提交
52 53 54
  }
};

D
dongzhihong 已提交
55
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
56
 public:
D
dongzhihong 已提交
57 58
  GaussianRandomOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
D
dongzhihong 已提交
59
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
D
dongzhihong 已提交
60
    AddAttr<std::vector<int>>("shape", "The shape of matrix to be randomized");
D
dongzhihong 已提交
61 62 63 64 65 66
    AddAttr<float>("mean", "mean value of random.").SetDefault(.0);
    AddAttr<float>("std", "minimum value of random value")
        .SetDefault(1.0)
        .LargerThan(.0);
    AddOutput("Out", "output matrix of random op");
    AddComment(R"DOC(
D
dongzhihong 已提交
67 68
GaussianRandom Operator fill a matrix in normal distribution.
The eqution : Out = GaussianRandom(Shape=(d0, d1, ...), Dtype, mean, std)
D
dongzhihong 已提交
69 70 71 72 73 74 75
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
76
REGISTER_OP(gaussian_random, paddle::operators::GaussianRandomOp,
D
dongzhihong 已提交
77
            paddle::operators::GaussianRandomOpMaker);
D
dongzhihong 已提交
78

D
dongzhihong 已提交
79 80 81 82
typedef paddle::operators::GaussianRandomOpKernel<paddle::platform::CPUPlace,
                                                  float>
    GaussianRandomOpKernel_CPU_float;
REGISTER_OP_CPU_KERNEL(gaussian_random, GaussianRandomOpKernel_CPU_float);