gaussian_random_op.cc 3.0 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Q
qijun 已提交
12 13
#include <random>
#include "paddle/framework/op_registry.h"
D
dongzhihong 已提交
14 15 16

namespace paddle {
namespace operators {
D
dongzhihong 已提交
17

Q
qijun 已提交
18 19 20 21
template <typename T>
class CPUGaussianRandomKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Q
qiaolongfei 已提交
22 23
    float mean = context.GetAttr<float>("mean");
    float std = context.GetAttr<float>("std");
Q
qijun 已提交
24 25 26
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Q
qiaolongfei 已提交
27
    unsigned int seed = static_cast<unsigned int>(context.GetAttr<int>("seed"));
Q
qijun 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
    ssize_t size = framework::product(tensor->dims());
    for (ssize_t i = 0; i < size; ++i) {
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
41
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
42 43
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
44

D
dongzhihong 已提交
45
 protected:
46
  void InferShape(const framework::InferShapeContext& context) const override {
Q
qijun 已提交
47
    auto* tensor = context.Output<framework::Tensor>("Out");
48 49 50
    auto dims = GetAttr<std::vector<int>>("dims");
    PADDLE_ENFORCE(dims.size() > 0UL,
                   "dims can be one int or array. dims must be set.");
D
dongzhihong 已提交
51
    tensor->Resize(framework::make_ddim(dims));
D
dongzhihong 已提交
52 53 54
  }
};

D
dongzhihong 已提交
55
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
56
 public:
D
dongzhihong 已提交
57 58
  GaussianRandomOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
D
dongzhihong 已提交
59 60 61
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
    AddOutput("Out", "output matrix of random op");
    AddComment(R"DOC(
62 63
GaussianRandom operator.
Use to initialize tensor with gaussian random generator.
D
dongzhihong 已提交
64
)DOC");
65 66

    AddAttr<std::vector<int>>("dims", "The dimension of random tensor.");
Q
qijun 已提交
67 68 69 70 71 72
    AddAttr<float>("mean", "mean of random tensor.").SetDefault(.0f);
    AddAttr<float>("std", "std of random tensor.").SetDefault(1.0f);
    AddAttr<int>("seed",
                 "Random seed of generator."
                 "0 means use system wide seed")
        .SetDefault(0);
D
dongzhihong 已提交
73 74 75 76 77 78
  }
};

}  // namespace operators
}  // namespace paddle

79
namespace ops = paddle::operators;
F
fengjiayi 已提交
80 81
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
Q
qijun 已提交
82
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>);