gaussian_random_op.cc 3.1 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Q
qijun 已提交
12 13
#include <random>
#include "paddle/framework/op_registry.h"
D
dongzhihong 已提交
14 15 16

namespace paddle {
namespace operators {
D
dongzhihong 已提交
17

Q
qijun 已提交
18 19 20 21
template <typename T>
class CPUGaussianRandomKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
22 23
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
24 25 26
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
27
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
28 29 30 31 32 33
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
34
    int64_t size = tensor->numel();
Q
qijun 已提交
35
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
36 37 38 39 40
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
41
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
42 43
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
44

D
dongzhihong 已提交
45
 protected:
46
  void InferShape(const framework::InferShapeContext& context) const override {
47
    auto* tensor = context.Output<framework::LoDTensor>("Out");
Y
Yu Yang 已提交
48
    auto dims = Attr<std::vector<int>>("dims");
Q
qijun 已提交
49 50
    std::vector<int64_t> temp;
    temp.reserve(dims.size());
Q
qijun 已提交
51 52 53
    for (auto dim : dims) {
      temp.push_back(static_cast<int64_t>(dim));
    }
54 55
    PADDLE_ENFORCE(dims.size() > 0UL,
                   "dims can be one int or array. dims must be set.");
Q
qijun 已提交
56
    tensor->Resize(framework::make_ddim(temp));
D
dongzhihong 已提交
57 58 59
  }
};

D
dongzhihong 已提交
60
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
61
 public:
D
dongzhihong 已提交
62 63
  GaussianRandomOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
D
dongzhihong 已提交
64 65 66
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
    AddOutput("Out", "output matrix of random op");
    AddComment(R"DOC(
67 68
GaussianRandom operator.
Use to initialize tensor with gaussian random generator.
D
dongzhihong 已提交
69
)DOC");
70 71

    AddAttr<std::vector<int>>("dims", "The dimension of random tensor.");
Q
qijun 已提交
72 73 74 75 76 77
    AddAttr<float>("mean", "mean of random tensor.").SetDefault(.0f);
    AddAttr<float>("std", "std of random tensor.").SetDefault(1.0f);
    AddAttr<int>("seed",
                 "Random seed of generator."
                 "0 means use system wide seed")
        .SetDefault(0);
D
dongzhihong 已提交
78 79 80 81 82 83
  }
};

}  // namespace operators
}  // namespace paddle

84
namespace ops = paddle::operators;
F
fengjiayi 已提交
85 86
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
Q
qijun 已提交
87
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>);