distribute_transpiler.py 22.1 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
T
typhoonzero 已提交
14
from __future__ import print_function
T
done  
typhoonzero 已提交
15 16 17 18
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
19
from distributed_spliter import *
T
typhoonzero 已提交
20
import math
21
from . import core
T
done  
typhoonzero 已提交
22 23


T
typhoonzero 已提交
24 25 26 27 28 29
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
30

T
typhoonzero 已提交
31 32
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
33 34


T
typhoonzero 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
        We may need to split dense tensor to one or several blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
        
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        mininum block size is 1024. The max block size is used to prevent
        too large block that may causing send error.
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
        # update split_count after align
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.
            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
101
        assert (callable(split_method))
T
done  
typhoonzero 已提交
102 103
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
104
        self.program = program
T
done  
typhoonzero 已提交
105
        self.trainers = trainers
T
typhoonzero 已提交
106
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
107 108 109 110 111 112
        # steps to transpile:
        # 1. split variable to multiple blocks, align by product(dim[1:]) (width).
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
        # 5. create new program as parameter server.
T
typhoonzero 已提交
113
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
114

T
typhoonzero 已提交
115
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
116 117

        # step1
T
typhoonzero 已提交
118 119
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
120
        # TODO: add split selected rows support
T
typhoonzero 已提交
121 122
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
123
        # step2
T
typhoonzero 已提交
124
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
125 126 127

        # step3
        send_inputs = []
T
typhoonzero 已提交
128
        send_outputs = []
T
typhoonzero 已提交
129 130 131 132
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
133 134
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
135 136 137
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
T
typhoonzero 已提交
138 139 140
        # let send_op know which endpoint to send which var, eplist is of the same
        # order of send_inputs.
        eplist = split_method(send_inputs, pserver_endpoints)
T
typhoonzero 已提交
141
        # create mapping of endpoint -> splited var to create pserver side program
T
typhoonzero 已提交
142 143 144 145 146 147 148 149
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
150 151 152 153 154 155

        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
156 157 158
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
159 160
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
161 162 163
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
164
                inputs={"X": splited_var},
T
typhoonzero 已提交
165
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
166
                attrs={"axis": 0})
T
typhoonzero 已提交
167 168 169

    def _create_vars_from_blocklist(self, program, block_list):
        block_map = dict()
T
typhoonzero 已提交
170
        var_mapping = dict()
T
typhoonzero 已提交
171 172 173 174 175 176 177
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
178 179 180 181
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
182 183 184 185
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
186

T
typhoonzero 已提交
187
            for i, block in enumerate(splited):
T
typhoonzero 已提交
188
                size = block[1]
T
typhoonzero 已提交
189 190 191 192
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
193 194 195 196
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
197
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
198
                var_mapping[varname].append(var)
T
typhoonzero 已提交
199
        return var_mapping
T
done  
typhoonzero 已提交
200 201 202 203 204 205 206 207 208

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
T
typhoonzero 已提交
209 210 211
            # HACK: let all param in pserver persistable so child
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
212

T
typhoonzero 已提交
213 214 215
    def _append_split_op(self, program, gradblocks):
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
216 217
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
218
                continue
T
typhoonzero 已提交
219
            orig_var = program.global_block().vars[varname]
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            if orig_var == core.VarDesc.VarType.SELECTED_ROWS:
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
            elif orig_var == core.VarDesc.VarType.LOD_TENSOR:
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
242
        return var_mapping
T
done  
typhoonzero 已提交
243

T
typhoonzero 已提交
244
    def get_trainer_program(self):
T
typhoonzero 已提交
245
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
246 247
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
248

T
done  
typhoonzero 已提交
249 250 251 252 253 254 255 256 257 258 259
    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
        Param and Grad is splited to multiple servers.
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
        if op.inputs.has_key("Param"):
            if op.inputs["Param"].name in param_names:
                return True
            else:
                for n in param_names:
                    if n.startswith(op.inputs["Param"].name+".block") and \
                        n != op.inputs["Param"].name:
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
                prev_output_names = [o.name for o in prev_op.outputs.values()]
                prev_input_names = [o.name for o in prev_op.inputs.values()]
                found1 = False
                found2 = False
                for _, v in op.inputs.iteritems():
                    if v.name in prev_output_names:
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
                for _, v in op.outputs.iteritems():
                    if v.name in prev_input_names:
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

    def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint):
T
typhoonzero 已提交
326
        new_inputs = dict()
T
typhoonzero 已提交
327 328
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
329 330 331 332 333 334 335 336 337 338 339
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
                    if g.name.startswith(var.name):
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
340
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
341 342 343 344 345 346
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
347
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
348 349
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
350 351 352
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
353
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
354 355 356 357
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
358 359 360 361 362 363 364 365 366 367
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
                    if p.name.startswith(var.name):
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
368
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
369
                    name=param_block.name,
T
typhoonzero 已提交
370
                    persistable=True,
T
typhoonzero 已提交
371 372
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
373

T
typhoonzero 已提交
374
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
389 390 391 392 393 394 395 396
            # create var in pserver program global block.
            # TODO(typhoonzero): put blocks in one program to avoid create two
            # variables.
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
T
typhoonzero 已提交
397

T
typhoonzero 已提交
398 399
        # change outputs ParamOut variable
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
400
        program.global_block().append_op(
T
typhoonzero 已提交
401 402 403 404 405
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
406
    def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op):
T
typhoonzero 已提交
407
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
408
            program.global_block().create_var(
T
typhoonzero 已提交
409 410 411 412
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
413 414 415 416 417
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
418
        program.global_block().append_op(
T
typhoonzero 已提交
419
            type=opt_op.type,
T
typhoonzero 已提交
420
            inputs=opt_op.inputs,
T
typhoonzero 已提交
421 422 423
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

424
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
425 426 427 428 429 430 431 432 433 434 435
        """
        get pserver side program by endpoint

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
436
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                print("create variable for program: %s.trainer_%d" %
                      (v.name, trainer_id))
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
450 451
        # step6
        optimize_sub_program = Program()
452 453 454
        for idx, opt_op in enumerate(self.optimize_ops):
            is_op_on_pserver = self._is_op_on_pserver(endpoint,
                                                      self.optimize_ops, idx)
T
typhoonzero 已提交
455 456
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
457
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
458 459
                self._append_pserver_ops(optimize_sub_program, pserver_program,
                                         opt_op, endpoint)
T
typhoonzero 已提交
460
            else:
T
typhoonzero 已提交
461 462
                self._append_pserver_non_opt_ops(optimize_sub_program,
                                                 pserver_program, opt_op)
T
done  
typhoonzero 已提交
463 464
        pserver_program.global_block().append_op(
            type="recv",
T
typhoonzero 已提交
465 466
            inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"]
                    },  # grads to recv
T
done  
typhoonzero 已提交
467 468 469 470
            outputs={},
            attrs={
                "OptimizeProgram": optimize_sub_program.desc,
                "endpoint": endpoint,
T
typhoonzero 已提交
471 472 473 474 475 476 477 478
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
479
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
480 481 482
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
483

T
typhoonzero 已提交
484
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        was splited to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if pname.startswith(varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
501 502
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
503
        created_var_map = dict()
Y
update  
yi.wu 已提交
504
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
505 506
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
507
                persistable=var.persistable,
T
typhoonzero 已提交
508 509 510 511 512 513 514
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
Y
update  
yi.wu 已提交
515 516
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
517 518 519
            for key, var in op.outputs.iteritems():
                newname, _ = _get_splited_name_and_shape(var.name)
                if newname:
Y
update  
yi.wu 已提交
520
                    op_on_pserver = True
T
typhoonzero 已提交
521
                    new_outputs[key] = created_var_map[newname]
Y
update  
yi.wu 已提交
522
                elif var.name in pserver_vars:
T
typhoonzero 已提交
523
                    op_on_pserver = True
Y
update  
yi.wu 已提交
524 525
                    new_outputs[key] = pserver_vars[var.name]

T
typhoonzero 已提交
526
            if op_on_pserver:
T
typhoonzero 已提交
527 528 529
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
530
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
531 532 533 534 535 536
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=op.inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog