post_process.py 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
M
Manuel Garcia 已提交
20
from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly
F
FlyingQianMM 已提交
21
from ppdet.modeling.layers import TTFBox
22
from .transformers import bbox_cxcywh_to_xyxy
W
wangguanzhong 已提交
23 24 25 26
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
27

28
__all__ = [
29 30
    'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess',
    'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess',
F
FL77N 已提交
31
    'DETRBBoxPostProcess', 'SparsePostProcess'
32
]
F
Feng Ni 已提交
33

Q
qingqing01 已提交
34 35

@register
C
cnn 已提交
36
class BBoxPostProcess(nn.Layer):
37
    __shared__ = ['num_classes', 'export_onnx']
Q
qingqing01 已提交
38 39
    __inject__ = ['decode', 'nms']

40 41
    def __init__(self, num_classes=80, decode=None, nms=None,
                 export_onnx=False):
Q
qingqing01 已提交
42
        super(BBoxPostProcess, self).__init__()
43
        self.num_classes = num_classes
Q
qingqing01 已提交
44 45
        self.decode = decode
        self.nms = nms
46
        self.export_onnx = export_onnx
Q
qingqing01 已提交
47

C
cnn 已提交
48
    def forward(self, head_out, rois, im_shape, scale_factor):
49 50 51
        """
        Decode the bbox and do NMS if needed. 

F
Feng Ni 已提交
52 53 54 55 56
        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
57
            export_onnx (bool): whether export model to onnx
58
        Returns:
F
Feng Ni 已提交
59 60 61 62 63
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
64
        """
F
Feng Ni 已提交
65 66
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
67
            bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
68

F
Feng Ni 已提交
69 70 71
        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)
72 73 74 75 76 77 78 79 80 81

        if self.export_onnx:
            # add fake box after postprocess when exporting onnx 
            fake_bboxes = paddle.to_tensor(
                np.array(
                    [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))

            bbox_pred = paddle.concat([bbox_pred, fake_bboxes])
            bbox_num = bbox_num + 1

Q
qingqing01 已提交
82 83
        return bbox_pred, bbox_num

84 85 86
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
F
Feng Ni 已提交
87 88 89 90
        get final prediction. 
        
        Notes:
        Currently only support bs = 1.
91 92

        Args:
G
Guanghua Yu 已提交
93
            bboxes (Tensor): The output bboxes with shape [N, 6] after decode
F
Feng Ni 已提交
94 95 96 97 98
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
99
        Returns:
F
Feng Ni 已提交
100 101
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
102
        """
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        if not self.export_onnx:
            bboxes_list = []
            bbox_num_list = []
            id_start = 0
            fake_bboxes = paddle.to_tensor(
                np.array(
                    [[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
            fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))

            # add fake bbox when output is empty for each batch
            for i in range(bbox_num.shape[0]):
                if bbox_num[i] == 0:
                    bboxes_i = fake_bboxes
                    bbox_num_i = fake_bbox_num
                else:
                    bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
                    bbox_num_i = bbox_num[i]
                    id_start += bbox_num[i]
                bboxes_list.append(bboxes_i)
                bbox_num_list.append(bbox_num_i)
            bboxes = paddle.concat(bboxes_list)
            bbox_num = paddle.concat(bbox_num_list)
W
wangguanzhong 已提交
125

126 127
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        if not self.export_onnx:
            origin_shape_list = []
            scale_factor_list = []
            # scale_factor: scale_y, scale_x
            for i in range(bbox_num.shape[0]):
                expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                             [bbox_num[i], 2])
                scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
                scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
                expand_scale = paddle.expand(scale, [bbox_num[i], 4])
                origin_shape_list.append(expand_shape)
                scale_factor_list.append(expand_scale)

            self.origin_shape_list = paddle.concat(origin_shape_list)
            scale_factor_list = paddle.concat(scale_factor_list)

        else:
            # simplify the computation for bs=1 when exporting onnx
            scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
            scale = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
            self.origin_shape_list = paddle.expand(origin_shape,
                                                   [bbox_num[0], 2])
            scale_factor_list = paddle.expand(scale, [bbox_num[0], 4])
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
W
wangguanzhong 已提交
174
        return bboxes, pred_result, bbox_num
175 176 177 178

    def get_origin_shape(self, ):
        return self.origin_shape_list

Q
qingqing01 已提交
179 180 181

@register
class MaskPostProcess(object):
W
wangguanzhong 已提交
182
    __shared__ = ['export_onnx']
W
wangguanzhong 已提交
183 184 185 186 187 188 189
    """
    refer to:
    https://github.com/facebookresearch/detectron2/layers/mask_ops.py

    Get Mask output according to the output from model
    """

W
wangguanzhong 已提交
190
    def __init__(self, binary_thresh=0.5, export_onnx=False):
Q
qingqing01 已提交
191 192
        super(MaskPostProcess, self).__init__()
        self.binary_thresh = binary_thresh
W
wangguanzhong 已提交
193
        self.export_onnx = export_onnx
Q
qingqing01 已提交
194

195
    def paste_mask(self, masks, boxes, im_h, im_w):
F
Feng Ni 已提交
196 197 198
        """
        Paste the mask prediction to the original image.
        """
199 200
        x0_int, y0_int = 0, 0
        x1_int, y1_int = im_w, im_h
201
        x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
202 203 204
        N = masks.shape[0]
        img_y = paddle.arange(y0_int, y1_int) + 0.5
        img_x = paddle.arange(x0_int, x1_int) + 0.5
W
wangguanzhong 已提交
205

206 207
        img_y = (img_y - y0) / (y1 - y0) * 2 - 1
        img_x = (img_x - x0) / (x1 - x0) * 2 - 1
208
        # img_x, img_y have shapes (N, w), (N, h)
209

210 211 212 213
        gx = img_x[:, None, :].expand(
            [N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
        gy = img_y[:, :, None].expand(
            [N, paddle.shape(img_y)[1], paddle.shape(img_x)[1]])
214 215 216 217 218 219
        grid = paddle.stack([gx, gy], axis=3)
        img_masks = F.grid_sample(masks, grid, align_corners=False)
        return img_masks[:, 0]

    def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
        """
F
Feng Ni 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232
        Decode the mask_out and paste the mask to the origin image.

        Args:
            mask_out (Tensor): mask_head output with shape [N, 28, 28].
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            origin_shape (Tensor): The origin shape of the input image, the tensor
                shape is [N, 2], and each row is [h, w].
        Returns:
            pred_result (Tensor): The final prediction mask results with shape
                [N, h, w] in binary mask style.
233 234
        """
        num_mask = mask_out.shape[0]
G
Guanghua Yu 已提交
235
        origin_shape = paddle.cast(origin_shape, 'int32')
W
wangguanzhong 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

        if self.export_onnx:
            h, w = origin_shape[0][0], origin_shape[0][1]
            mask_onnx = self.paste_mask(mask_out[:, None, :, :], bboxes[:, 2:],
                                        h, w)
            mask_onnx = mask_onnx >= self.binary_thresh
            pred_result = paddle.cast(mask_onnx, 'int32')

        else:
            max_h = paddle.max(origin_shape[:, 0])
            max_w = paddle.max(origin_shape[:, 1])
            pred_result = paddle.zeros(
                [num_mask, max_h, max_w], dtype='int32') - 1

            id_start = 0
            for i in range(paddle.shape(bbox_num)[0]):
                bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
                mask_out_i = mask_out[id_start:id_start + bbox_num[i], :, :]
                im_h = origin_shape[i, 0]
                im_w = origin_shape[i, 1]
                bbox_num_i = bbox_num[id_start]
                pred_mask = self.paste_mask(mask_out_i[:, None, :, :],
                                            bboxes_i[:, 2:], im_h, im_w)
                pred_mask = paddle.cast(pred_mask >= self.binary_thresh,
                                        'int32')
                pred_result[id_start:id_start + bbox_num[i], :im_h, :
                            im_w] = pred_mask
                id_start += bbox_num[i]
264

265
        return pred_result
F
Feng Ni 已提交
266 267 268 269 270 271 272 273 274 275 276 277


@register
class FCOSPostProcess(object):
    __inject__ = ['decode', 'nms']

    def __init__(self, decode=None, nms=None):
        super(FCOSPostProcess, self).__init__()
        self.decode = decode
        self.nms = nms

    def __call__(self, fcos_head_outs, scale_factor):
F
Feng Ni 已提交
278 279 280
        """
        Decode the bbox and do NMS in FCOS.
        """
F
Feng Ni 已提交
281 282 283 284 285
        locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
        bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
                                    centerness, scale_factor)
        bbox_pred, bbox_num, _ = self.nms(bboxes, score)
        return bbox_pred, bbox_num
C
cnn 已提交
286 287 288


@register
C
cnn 已提交
289
class S2ANetBBoxPostProcess(nn.Layer):
290
    __shared__ = ['num_classes']
C
cnn 已提交
291 292
    __inject__ = ['nms']

293
    def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
C
cnn 已提交
294
        super(S2ANetBBoxPostProcess, self).__init__()
295
        self.num_classes = num_classes
296
        self.nms_pre = nms_pre
C
cnn 已提交
297 298 299
        self.min_bbox_size = min_bbox_size
        self.nms = nms
        self.origin_shape_list = []
C
cnn 已提交
300 301 302 303 304
        self.fake_pred_cls_score_bbox = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
                dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
C
cnn 已提交
305

C
cnn 已提交
306
    def forward(self, pred_scores, pred_bboxes):
C
cnn 已提交
307 308 309 310 311 312
        """
        pred_scores : [N, M]  score
        pred_bboxes : [N, 5]  xc, yc, w, h, a
        im_shape : [N, 2]  im_shape
        scale_factor : [N, 2]  scale_factor
        """
C
cnn 已提交
313 314
        pred_ploys0 = rbox2poly(pred_bboxes)
        pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0)
C
cnn 已提交
315 316

        # pred_scores [NA, 16] --> [16, NA]
C
cnn 已提交
317 318
        pred_scores0 = paddle.transpose(pred_scores, [1, 0])
        pred_scores = paddle.unsqueeze(pred_scores0, axis=0)
C
cnn 已提交
319

320 321 322 323
        pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
                                                    self.num_classes)
        # Prevent empty bbox_pred from decode or NMS.
        # Bboxes and score before NMS may be empty due to the score threshold.
C
cnn 已提交
324 325 326 327 328 329
        if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[
                1] <= 1:
            pred_cls_score_bbox = self.fake_pred_cls_score_bbox
            bbox_num = self.fake_bbox_num

        pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10])
330
        return pred_cls_score_bbox, bbox_num
C
cnn 已提交
331

332
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
C
cnn 已提交
333 334 335 336
        """
        Rescale, clip and filter the bbox from the output of NMS to
        get final prediction.
        Args:
337
            bboxes(Tensor): bboxes [N, 10]
C
cnn 已提交
338 339 340 341 342 343 344 345 346 347
            bbox_num(Tensor): bbox_num
            im_shape(Tensor): [1 2]
            scale_factor(Tensor): [1 2]
        Returns:
            bbox_pred(Tensor): The output is the prediction with shape [N, 8]
                               including labels, scores and bboxes. The size of
                               bboxes are corresponding to the original image.
        """
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
            scale = paddle.concat([
                scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
                scale_y
            ])
            expand_scale = paddle.expand(scale, [bbox_num[i], 8])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 10], label, score, bbox
        pred_label_score = bboxes[:, 0:2]
C
cnn 已提交
368
        pred_bbox = bboxes[:, 2:]
369 370

        # rescale bbox to original image
C
cnn 已提交
371
        pred_bbox = pred_bbox.reshape([-1, 8])
372 373 374
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = origin_shape_list[:, 0]
        origin_w = origin_shape_list[:, 1]
C
cnn 已提交
375

376
        bboxes = scaled_bbox
C
cnn 已提交
377
        zeros = paddle.zeros_like(origin_h)
C
cnn 已提交
378 379 380 381 382 383 384 385
        x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
        y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
        x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
        y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
        x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
        y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
        x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
        y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
386 387 388
        pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
        pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
        return pred_result
389 390 391


@register
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
class JDEBBoxPostProcess(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['decode', 'nms']

    def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True):
        super(JDEBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.decode = decode
        self.nms = nms
        self.return_idx = return_idx

        self.fake_bbox_pred = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
        self.fake_nms_keep_idx = paddle.to_tensor(
            np.array(
                [[0]], dtype='int32'))

        self.fake_yolo_boxes_out = paddle.to_tensor(
            np.array(
                [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32'))
        self.fake_yolo_scores_out = paddle.to_tensor(
            np.array(
                [[[0.0]]], dtype='float32'))
        self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64'))

G
George Ni 已提交
419
    def forward(self, head_out, anchors):
420 421 422 423 424 425 426 427 428 429 430 431 432 433
        """
        Decode the bbox and do NMS for JDE model. 

        Args:
            head_out (list): Bbox_pred and cls_prob of bbox_head output.
            anchors (list): Anchors of JDE model.

        Returns:
            boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. 
            bbox_pred (Tensor): The output is the prediction with shape [N, 6]
                including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction of each batch with shape [N].
            nms_keep_idx (Tensor): The index of kept bboxes after NMS. 
        """
434
        boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors)
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449
        if len(boxes_idx) == 0:
            boxes_idx = self.fake_boxes_idx
            yolo_boxes_out = self.fake_yolo_boxes_out
            yolo_scores_out = self.fake_yolo_scores_out
        else:
            yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx)
            # TODO: only support bs=1 now
            yolo_boxes_out = paddle.reshape(
                yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4])
            yolo_scores_out = paddle.reshape(
                yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)])
            boxes_idx = boxes_idx[:, 1:]

        if self.return_idx:
G
George Ni 已提交
450 451 452 453 454 455
            bbox_pred, bbox_num, nms_keep_idx = self.nms(
                yolo_boxes_out, yolo_scores_out, self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
                nms_keep_idx = self.fake_nms_keep_idx
456 457
            return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
        else:
G
George Ni 已提交
458 459 460 461 462 463
            bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out,
                                              self.num_classes)
            if bbox_pred.shape[0] == 0:
                bbox_pred = self.fake_bbox_pred
                bbox_num = self.fake_bbox_num
            return _, bbox_pred, bbox_num, _
F
FlyingQianMM 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482


@register
class CenterNetPostProcess(TTFBox):
    """
    Postprocess the model outputs to get final prediction:
        1. Do NMS for heatmap to get top `max_per_img` bboxes.
        2. Decode bboxes using center offset and box size.
        3. Rescale decoded bboxes reference to the origin image shape.

    Args:
        max_per_img(int): the maximum number of predicted objects in a image,
            500 by default.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        regress_ltrb (bool): whether to regress left/top/right/bottom or
            width/height for a box, true by default.
        for_mot (bool): whether return other features used in tracking model.
    """

W
wangguanzhong 已提交
483
    __shared__ = ['down_ratio', 'for_mot']
F
FlyingQianMM 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497

    def __init__(self,
                 max_per_img=500,
                 down_ratio=4,
                 regress_ltrb=True,
                 for_mot=False):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.down_ratio = down_ratio
        self.regress_ltrb = regress_ltrb
        self.for_mot = for_mot

    def __call__(self, hm, wh, reg, im_shape, scale_factor):
        heat = self._simple_nms(hm)
498
        scores, inds, topk_clses, ys, xs = self._topk(heat)
F
Feng Ni 已提交
499 500
        scores = scores.unsqueeze(1)
        clses = topk_clses.unsqueeze(1)
F
FlyingQianMM 已提交
501 502 503 504

        reg_t = paddle.transpose(reg, [0, 2, 3, 1])
        # Like TTFBox, batch size is 1.
        # TODO: support batch size > 1
F
Feng Ni 已提交
505
        reg = paddle.reshape(reg_t, [-1, reg_t.shape[-1]])
F
FlyingQianMM 已提交
506 507 508 509 510 511 512
        reg = paddle.gather(reg, inds)
        xs = paddle.cast(xs, 'float32')
        ys = paddle.cast(ys, 'float32')
        xs = xs + reg[:, 0:1]
        ys = ys + reg[:, 1:2]

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
F
Feng Ni 已提交
513
        wh = paddle.reshape(wh_t, [-1, wh_t.shape[-1]])
F
FlyingQianMM 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526
        wh = paddle.gather(wh, inds)

        if self.regress_ltrb:
            x1 = xs - wh[:, 0:1]
            y1 = ys - wh[:, 1:2]
            x2 = xs + wh[:, 2:3]
            y2 = ys + wh[:, 3:4]
        else:
            x1 = xs - wh[:, 0:1] / 2
            y1 = ys - wh[:, 1:2] / 2
            x2 = xs + wh[:, 0:1] / 2
            y2 = ys + wh[:, 1:2] / 2

527
        n, c, feat_h, feat_w = paddle.shape(hm)
F
FlyingQianMM 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
        padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
        padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
        x1 = x1 * self.down_ratio
        y1 = y1 * self.down_ratio
        x2 = x2 * self.down_ratio
        y2 = y2 * self.down_ratio

        x1 = x1 - padw
        y1 = y1 - padh
        x2 = x2 - padw
        y2 = y2 - padh

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
F
Feng Ni 已提交
545
        boxes_shape = bboxes.shape[:]
F
FlyingQianMM 已提交
546 547
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
548
        results = paddle.concat([clses, scores, bboxes], axis=1)
F
FlyingQianMM 已提交
549
        if self.for_mot:
550
            return results, inds, topk_clses
F
FlyingQianMM 已提交
551
        else:
552
            return results, paddle.shape(results)[0:1], topk_clses
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595


@register
class DETRBBoxPostProcess(object):
    __shared__ = ['num_classes', 'use_focal_loss']
    __inject__ = []

    def __init__(self,
                 num_classes=80,
                 num_top_queries=100,
                 use_focal_loss=False):
        super(DETRBBoxPostProcess, self).__init__()
        self.num_classes = num_classes
        self.num_top_queries = num_top_queries
        self.use_focal_loss = use_focal_loss

    def __call__(self, head_out, im_shape, scale_factor):
        """
        Decode the bbox.

        Args:
            head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
        Returns:
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [bs], and is N.
        """
        bboxes, logits, masks = head_out

        bbox_pred = bbox_cxcywh_to_xyxy(bboxes)
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
        img_h, img_w = origin_shape.unbind(1)
        origin_shape = paddle.stack(
            [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0)
        bbox_pred *= origin_shape

        scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax(
            logits)[:, :, :-1]

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        if not self.use_focal_loss:
            scores, labels = scores.max(-1), scores.argmax(-1)
            if scores.shape[1] > self.num_top_queries:
                scores, index = paddle.topk(
                    scores, self.num_top_queries, axis=-1)
                labels = paddle.stack(
                    [paddle.gather(l, i) for l, i in zip(labels, index)])
                bbox_pred = paddle.stack(
                    [paddle.gather(b, i) for b, i in zip(bbox_pred, index)])
        else:
            scores, index = paddle.topk(
                scores.reshape([logits.shape[0], -1]),
                self.num_top_queries,
                axis=-1)
            labels = index % logits.shape[2]
            index = index // logits.shape[2]
612 613 614 615 616 617 618 619 620 621 622 623 624
            bbox_pred = paddle.stack(
                [paddle.gather(b, i) for b, i in zip(bbox_pred, index)])

        bbox_pred = paddle.concat(
            [
                labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1),
                bbox_pred
            ],
            axis=-1)
        bbox_num = paddle.to_tensor(
            bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]])
        bbox_pred = bbox_pred.reshape([-1, 6])
        return bbox_pred, bbox_num
F
FL77N 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711


@register
class SparsePostProcess(object):
    __shared__ = ['num_classes']

    def __init__(self, num_proposals, num_classes=80):
        super(SparsePostProcess, self).__init__()
        self.num_classes = num_classes
        self.num_proposals = num_proposals

    def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh):
        """
        Arguments:
            box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
                The tensor predicts the classification probability for each proposal.
            box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
                The tensor predicts 4-vector (x,y,w,h) box
                regression values for every proposal
            scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of  per img
            img_whwh (Tensor): tensors of shape [batch_size, 4]
        Returns:
            bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values:
            [label, confidence, xmin, ymin, xmax, ymax]
            bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image.
        """
        assert len(box_cls) == len(scale_factor_wh) == len(img_whwh)

        img_wh = img_whwh[:, :2]

        scores = F.sigmoid(box_cls)
        labels = paddle.arange(0, self.num_classes). \
            unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1)

        classes_all = []
        scores_all = []
        boxes_all = []
        for i, (scores_per_image,
                box_pred_per_image) in enumerate(zip(scores, box_pred)):

            scores_per_image, topk_indices = scores_per_image.flatten(
                0, 1).topk(
                    self.num_proposals, sorted=False)
            labels_per_image = paddle.gather(labels, topk_indices, axis=0)

            box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile(
                [1, self.num_classes, 1]).reshape([-1, 4])
            box_pred_per_image = paddle.gather(
                box_pred_per_image, topk_indices, axis=0)

            classes_all.append(labels_per_image)
            scores_all.append(scores_per_image)
            boxes_all.append(box_pred_per_image)

        bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32")
        boxes_final = []

        for i in range(len(scale_factor_wh)):
            classes = classes_all[i]
            boxes = boxes_all[i]
            scores = scores_all[i]

            boxes[:, 0::2] = paddle.clip(
                boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0]
            boxes[:, 1::2] = paddle.clip(
                boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1]
            boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), (
                boxes[:, 3] - boxes[:, 1]).numpy()

            keep = (boxes_w > 1.) & (boxes_h > 1.)

            if (keep.sum() == 0):
                bboxes = paddle.zeros([1, 6]).astype("float32")
            else:
                boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32")
                classes = paddle.to_tensor(classes.numpy()[keep]).astype(
                    "float32").unsqueeze(-1)
                scores = paddle.to_tensor(scores.numpy()[keep]).astype(
                    "float32").unsqueeze(-1)

                bboxes = paddle.concat([classes, scores, boxes], axis=-1)

            boxes_final.append(bboxes)
            bbox_num[i] = bboxes.shape[0]

        bbox_pred = paddle.concat(boxes_final)
        return bbox_pred, bbox_num
M
Mark Ma 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767


def nms(dets, thresh):
    """Apply classic DPM-style greedy NMS."""
    if dets.shape[0] == 0:
        return dets[[], :]
    scores = dets[:, 0]
    x1 = dets[:, 1]
    y1 = dets[:, 2]
    x2 = dets[:, 3]
    y2 = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
    suppressed = np.zeros((ndets), dtype=np.int)

    # nominal indices
    # _i, _j
    # sorted indices
    # i, j
    # temp variables for box i's (the box currently under consideration)
    # ix1, iy1, ix2, iy2, iarea

    # variables for computing overlap with box j (lower scoring box)
    # xx1, yy1, xx2, yy2
    # w, h
    # inter, ovr

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (iarea + areas[j] - inter)
            if ovr >= thresh:
                suppressed[j] = 1
    keep = np.where(suppressed == 0)[0]
    dets = dets[keep, :]
    return dets