You need to sign in or sign up before continuing.
post_process.py 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
C
cnn 已提交
20
from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly, rbox2poly
W
wangguanzhong 已提交
21 22 23 24
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
25

26 27 28 29 30 31 32
__all__ = [
    'BBoxPostProcess',
    'MaskPostProcess',
    'FCOSPostProcess',
    'S2ANetBBoxPostProcess',
    'JDEBBoxPostProcess',
]
F
Feng Ni 已提交
33

Q
qingqing01 已提交
34 35 36

@register
class BBoxPostProcess(object):
37
    __shared__ = ['num_classes']
Q
qingqing01 已提交
38 39
    __inject__ = ['decode', 'nms']

40
    def __init__(self, num_classes=80, decode=None, nms=None):
Q
qingqing01 已提交
41
        super(BBoxPostProcess, self).__init__()
42
        self.num_classes = num_classes
Q
qingqing01 已提交
43 44 45
        self.decode = decode
        self.nms = nms

46 47 48 49
    def __call__(self, head_out, rois, im_shape, scale_factor):
        """
        Decode the bbox and do NMS if needed. 

F
Feng Ni 已提交
50 51 52 53 54
        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
55
        Returns:
F
Feng Ni 已提交
56 57 58 59 60
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
61
        """
F
Feng Ni 已提交
62 63
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
64
            bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
F
Feng Ni 已提交
65 66 67
        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)
Q
qingqing01 已提交
68 69
        return bbox_pred, bbox_num

70 71 72
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
F
Feng Ni 已提交
73 74 75 76
        get final prediction. 
        
        Notes:
        Currently only support bs = 1.
77 78

        Args:
F
Feng Ni 已提交
79 80 81 82 83 84
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
85
        Returns:
F
Feng Ni 已提交
86 87
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
88 89 90 91 92 93 94 95 96
        """
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
G
Guanghua Yu 已提交
97
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
            scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
            expand_scale = paddle.expand(scale, [bbox_num[i], 4])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        self.origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
        return pred_result

    def get_origin_shape(self, ):
        return self.origin_shape_list

Q
qingqing01 已提交
132 133 134

@register
class MaskPostProcess(object):
135
    def __init__(self, binary_thresh=0.5):
Q
qingqing01 已提交
136 137 138
        super(MaskPostProcess, self).__init__()
        self.binary_thresh = binary_thresh

139
    def paste_mask(self, masks, boxes, im_h, im_w):
F
Feng Ni 已提交
140 141 142
        """
        Paste the mask prediction to the original image.
        """
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
        masks = paddle.unsqueeze(masks, [0, 1])
        img_y = paddle.arange(0, im_h, dtype='float32') + 0.5
        img_x = paddle.arange(0, im_w, dtype='float32') + 0.5
        img_y = (img_y - y0) / (y1 - y0) * 2 - 1
        img_x = (img_x - x0) / (x1 - x0) * 2 - 1
        img_x = paddle.unsqueeze(img_x, [1])
        img_y = paddle.unsqueeze(img_y, [2])
        N = boxes.shape[0]

        gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]])
        gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]])
        grid = paddle.stack([gx, gy], axis=3)
        img_masks = F.grid_sample(masks, grid, align_corners=False)
        return img_masks[:, 0]

    def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
        """
F
Feng Ni 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173
        Decode the mask_out and paste the mask to the origin image.

        Args:
            mask_out (Tensor): mask_head output with shape [N, 28, 28].
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            origin_shape (Tensor): The origin shape of the input image, the tensor
                shape is [N, 2], and each row is [h, w].
        Returns:
            pred_result (Tensor): The final prediction mask results with shape
                [N, h, w] in binary mask style.
174 175
        """
        num_mask = mask_out.shape[0]
G
Guanghua Yu 已提交
176 177
        origin_shape = paddle.cast(origin_shape, 'int32')
        # TODO: support bs > 1 and mask output dtype is bool
178
        pred_result = paddle.zeros(
G
Guanghua Yu 已提交
179
            [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32')
180
        if bbox_num == 1 and bboxes[0][0] == -1:
G
Guanghua Yu 已提交
181 182
            return pred_result

183
        # TODO: optimize chunk paste
G
Guanghua Yu 已提交
184
        pred_result = []
185
        for i in range(bboxes.shape[0]):
G
Guanghua Yu 已提交
186
            im_h, im_w = origin_shape[i][0], origin_shape[i][1]
187 188 189
            pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h,
                                        im_w)
            pred_mask = pred_mask >= self.binary_thresh
G
Guanghua Yu 已提交
190 191 192
            pred_mask = paddle.cast(pred_mask, 'int32')
            pred_result.append(pred_mask)
        pred_result = paddle.concat(pred_result)
193
        return pred_result
F
Feng Ni 已提交
194 195 196 197 198 199 200 201 202 203 204 205


@register
class FCOSPostProcess(object):
    __inject__ = ['decode', 'nms']

    def __init__(self, decode=None, nms=None):
        super(FCOSPostProcess, self).__init__()
        self.decode = decode
        self.nms = nms

    def __call__(self, fcos_head_outs, scale_factor):
F
Feng Ni 已提交
206 207 208
        """
        Decode the bbox and do NMS in FCOS.
        """
F
Feng Ni 已提交
209 210 211 212 213
        locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
        bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
                                    centerness, scale_factor)
        bbox_pred, bbox_num, _ = self.nms(bboxes, score)
        return bbox_pred, bbox_num
C
cnn 已提交
214 215 216


@register
C
cnn 已提交
217
class S2ANetBBoxPostProcess(nn.Layer):
218
    __shared__ = ['num_classes']
C
cnn 已提交
219 220
    __inject__ = ['nms']

221
    def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
C
cnn 已提交
222
        super(S2ANetBBoxPostProcess, self).__init__()
223
        self.num_classes = num_classes
C
cnn 已提交
224 225 226 227
        self.nms_pre = nms_pre
        self.min_bbox_size = min_bbox_size
        self.nms = nms
        self.origin_shape_list = []
C
cnn 已提交
228 229 230 231 232
        self.fake_pred_cls_score_bbox = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
                dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
C
cnn 已提交
233

C
cnn 已提交
234
    def forward(self, pred_scores, pred_bboxes):
C
cnn 已提交
235 236 237 238 239 240
        """
        pred_scores : [N, M]  score
        pred_bboxes : [N, 5]  xc, yc, w, h, a
        im_shape : [N, 2]  im_shape
        scale_factor : [N, 2]  scale_factor
        """
C
cnn 已提交
241 242
        pred_ploys0 = rbox2poly(pred_bboxes)
        pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0)
C
cnn 已提交
243 244

        # pred_scores [NA, 16] --> [16, NA]
C
cnn 已提交
245 246
        pred_scores0 = paddle.transpose(pred_scores, [1, 0])
        pred_scores = paddle.unsqueeze(pred_scores0, axis=0)
C
cnn 已提交
247

248 249 250 251
        pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
                                                    self.num_classes)
        # Prevent empty bbox_pred from decode or NMS.
        # Bboxes and score before NMS may be empty due to the score threshold.
C
cnn 已提交
252 253 254 255 256 257 258
        if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[
                1] <= 1:
            pred_cls_score_bbox = self.fake_pred_cls_score_bbox
            bbox_num = self.fake_bbox_num

        pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10])
        assert pred_cls_score_bbox.shape[1] == 10
259
        return pred_cls_score_bbox, bbox_num
C
cnn 已提交
260

261
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
C
cnn 已提交
262 263 264 265
        """
        Rescale, clip and filter the bbox from the output of NMS to
        get final prediction.
        Args:
266
            bboxes(Tensor): bboxes [N, 10]
C
cnn 已提交
267 268 269 270 271 272 273 274
            bbox_num(Tensor): bbox_num
            im_shape(Tensor): [1 2]
            scale_factor(Tensor): [1 2]
        Returns:
            bbox_pred(Tensor): The output is the prediction with shape [N, 8]
                               including labels, scores and bboxes. The size of
                               bboxes are corresponding to the original image.
        """
C
cnn 已提交
275
        assert bboxes.shape[1] == 10
C
cnn 已提交
276 277
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
            scale = paddle.concat([
                scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
                scale_y
            ])
            expand_scale = paddle.expand(scale, [bbox_num[i], 8])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 10], label, score, bbox
        pred_label_score = bboxes[:, 0:2]
C
cnn 已提交
298
        pred_bbox = bboxes[:, 2:]
299 300 301 302 303

        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = origin_shape_list[:, 0]
        origin_w = origin_shape_list[:, 1]
C
cnn 已提交
304

305
        bboxes = scaled_bbox
C
cnn 已提交
306
        zeros = paddle.zeros_like(origin_h)
C
cnn 已提交
307 308 309 310 311 312 313 314
        x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
        y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
        x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
        y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
        x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
        y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
        x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
        y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
315 316 317
        pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
        pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
        return pred_result
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347


@register
class JDEBBoxPostProcess(BBoxPostProcess):
    def __call__(self, head_out, anchors):
        """
        Decode the bbox and do NMS for JDE model. 

        Args:
            head_out (list): Bbox_pred and cls_prob of bbox_head output.
            anchors (list): Anchors of JDE model.

        Returns:
            boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. 
            bbox_pred (Tensor): The output is the prediction with shape [N, 6]
                including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction of each batch with shape [N].
            nms_keep_idx (Tensor): The index of kept bboxes after NMS. 
        """
        boxes_idx, bboxes, score = self.decode(head_out, anchors)
        bbox_pred, bbox_num, nms_keep_idx = self.nms(bboxes, score,
                                                     self.num_classes)
        if bbox_pred.shape[0] == 0:
            bbox_pred = paddle.to_tensor(
                np.array(
                    [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
            bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
            nms_keep_idx = paddle.to_tensor(np.array([[0]], dtype='int32'))

        return boxes_idx, bbox_pred, bbox_num, nms_keep_idx