You need to sign in or sign up before continuing.
post_process.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
20
from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly, pd_rbox2poly
Q
qingqing01 已提交
21
from . import ops
W
wangguanzhong 已提交
22 23 24 25
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
26

F
Feng Ni 已提交
27 28
__all__ = ['BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess']

Q
qingqing01 已提交
29 30 31

@register
class BBoxPostProcess(object):
32
    __shared__ = ['num_classes']
Q
qingqing01 已提交
33 34
    __inject__ = ['decode', 'nms']

35
    def __init__(self, num_classes=80, decode=None, nms=None):
Q
qingqing01 已提交
36
        super(BBoxPostProcess, self).__init__()
37
        self.num_classes = num_classes
Q
qingqing01 已提交
38 39 40
        self.decode = decode
        self.nms = nms

41 42 43 44
    def __call__(self, head_out, rois, im_shape, scale_factor):
        """
        Decode the bbox and do NMS if needed. 

F
Feng Ni 已提交
45 46 47 48 49
        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
50
        Returns:
F
Feng Ni 已提交
51 52 53 54 55
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
56
        """
F
Feng Ni 已提交
57 58
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
59
            bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
F
Feng Ni 已提交
60 61 62
        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)
Q
qingqing01 已提交
63 64
        return bbox_pred, bbox_num

65 66 67
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
F
Feng Ni 已提交
68 69 70 71
        get final prediction. 
        
        Notes:
        Currently only support bs = 1.
72 73

        Args:
F
Feng Ni 已提交
74 75 76 77 78 79
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
80
        Returns:
F
Feng Ni 已提交
81 82
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
83 84 85 86 87 88 89 90 91
        """
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
G
Guanghua Yu 已提交
92
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
            expand_scale = paddle.expand(scale, [bbox_num[i], 4])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        self.origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
        return pred_result

    def get_origin_shape(self, ):
        return self.origin_shape_list

Q
qingqing01 已提交
127 128 129

@register
class MaskPostProcess(object):
130
    def __init__(self, binary_thresh=0.5):
Q
qingqing01 已提交
131 132 133
        super(MaskPostProcess, self).__init__()
        self.binary_thresh = binary_thresh

134
    def paste_mask(self, masks, boxes, im_h, im_w):
F
Feng Ni 已提交
135 136 137
        """
        Paste the mask prediction to the original image.
        """
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
        masks = paddle.unsqueeze(masks, [0, 1])
        img_y = paddle.arange(0, im_h, dtype='float32') + 0.5
        img_x = paddle.arange(0, im_w, dtype='float32') + 0.5
        img_y = (img_y - y0) / (y1 - y0) * 2 - 1
        img_x = (img_x - x0) / (x1 - x0) * 2 - 1
        img_x = paddle.unsqueeze(img_x, [1])
        img_y = paddle.unsqueeze(img_y, [2])
        N = boxes.shape[0]

        gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]])
        gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]])
        grid = paddle.stack([gx, gy], axis=3)
        img_masks = F.grid_sample(masks, grid, align_corners=False)
        return img_masks[:, 0]

    def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
        """
F
Feng Ni 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168
        Decode the mask_out and paste the mask to the origin image.

        Args:
            mask_out (Tensor): mask_head output with shape [N, 28, 28].
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            origin_shape (Tensor): The origin shape of the input image, the tensor
                shape is [N, 2], and each row is [h, w].
        Returns:
            pred_result (Tensor): The final prediction mask results with shape
                [N, h, w] in binary mask style.
169 170
        """
        num_mask = mask_out.shape[0]
G
Guanghua Yu 已提交
171 172
        origin_shape = paddle.cast(origin_shape, 'int32')
        # TODO: support bs > 1 and mask output dtype is bool
173
        pred_result = paddle.zeros(
G
Guanghua Yu 已提交
174
            [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32')
175
        if bbox_num == 1 and bboxes[0][0] == -1:
G
Guanghua Yu 已提交
176 177
            return pred_result

178
        # TODO: optimize chunk paste
G
Guanghua Yu 已提交
179
        pred_result = []
180
        for i in range(bboxes.shape[0]):
G
Guanghua Yu 已提交
181
            im_h, im_w = origin_shape[i][0], origin_shape[i][1]
182 183 184
            pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h,
                                        im_w)
            pred_mask = pred_mask >= self.binary_thresh
G
Guanghua Yu 已提交
185 186 187
            pred_mask = paddle.cast(pred_mask, 'int32')
            pred_result.append(pred_mask)
        pred_result = paddle.concat(pred_result)
188
        return pred_result
F
Feng Ni 已提交
189 190 191 192 193 194 195 196 197 198 199 200


@register
class FCOSPostProcess(object):
    __inject__ = ['decode', 'nms']

    def __init__(self, decode=None, nms=None):
        super(FCOSPostProcess, self).__init__()
        self.decode = decode
        self.nms = nms

    def __call__(self, fcos_head_outs, scale_factor):
F
Feng Ni 已提交
201 202 203
        """
        Decode the bbox and do NMS in FCOS.
        """
F
Feng Ni 已提交
204 205 206 207 208
        locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
        bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
                                    centerness, scale_factor)
        bbox_pred, bbox_num, _ = self.nms(bboxes, score)
        return bbox_pred, bbox_num
C
cnn 已提交
209 210 211 212


@register
class S2ANetBBoxPostProcess(object):
213
    __shared__ = ['num_classes']
C
cnn 已提交
214 215
    __inject__ = ['nms']

216
    def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
C
cnn 已提交
217
        super(S2ANetBBoxPostProcess, self).__init__()
218
        self.num_classes = num_classes
C
cnn 已提交
219 220 221 222 223
        self.nms_pre = nms_pre
        self.min_bbox_size = min_bbox_size
        self.nms = nms
        self.origin_shape_list = []

224
    def __call__(self, pred_scores, pred_bboxes):
C
cnn 已提交
225 226 227 228 229 230
        """
        pred_scores : [N, M]  score
        pred_bboxes : [N, 5]  xc, yc, w, h, a
        im_shape : [N, 2]  im_shape
        scale_factor : [N, 2]  scale_factor
        """
231
        pred_ploys = pd_rbox2poly(pred_bboxes)
C
cnn 已提交
232 233 234 235 236 237 238 239 240
        pred_ploys = paddle.reshape(
            pred_ploys, [1, pred_ploys.shape[0], pred_ploys.shape[1]])

        pred_scores = paddle.to_tensor(pred_scores)
        # pred_scores [NA, 16] --> [16, NA]
        pred_scores = paddle.transpose(pred_scores, [1, 0])
        pred_scores = paddle.reshape(
            pred_scores, [1, pred_scores.shape[0], pred_scores.shape[1]])

241 242
        pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
                                                    self.num_classes)
C
cnn 已提交
243

244 245 246
        # Prevent empty bbox_pred from decode or NMS.
        # Bboxes and score before NMS may be empty due to the score threshold.
        if pred_cls_score_bbox.shape[0] == 0:
C
cnn 已提交
247 248
            pred_cls_score_bbox = paddle.to_tensor(
                np.array(
249
                    [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
C
cnn 已提交
250
            bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
251
        return pred_cls_score_bbox, bbox_num
C
cnn 已提交
252

253
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
C
cnn 已提交
254 255 256 257 258
        """
        Rescale, clip and filter the bbox from the output of NMS to
        get final prediction.

        Args:
259
            bboxes(Tensor): bboxes [N, 10]
C
cnn 已提交
260 261 262 263 264 265 266 267 268 269
            bbox_num(Tensor): bbox_num
            im_shape(Tensor): [1 2]
            scale_factor(Tensor): [1 2]
        Returns:
            bbox_pred(Tensor): The output is the prediction with shape [N, 8]
                               including labels, scores and bboxes. The size of
                               bboxes are corresponding to the original image.
        """
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
            scale = paddle.concat([
                scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
                scale_y
            ])
            expand_scale = paddle.expand(scale, [bbox_num[i], 8])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 10], label, score, bbox
        pred_label_score = bboxes[:, 0:2]
        pred_bbox = bboxes[:, 2:10:1]

        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = origin_shape_list[:, 0]
        origin_w = origin_shape_list[:, 1]
C
cnn 已提交
296

297
        bboxes = scaled_bbox
C
cnn 已提交
298
        zeros = paddle.zeros_like(origin_h)
C
cnn 已提交
299 300 301 302 303 304 305 306
        x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
        y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
        x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
        y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
        x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
        y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
        x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
        y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
307 308 309
        pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
        pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
        return pred_result