framework.py 70.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21
import traceback
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41
    'Program',
    'Operator',
F
fengjiayi 已提交
42
    'Parameter',
43 44 45
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
46
    'get_var',
47
    'name_scope',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55 56
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
121 122 123
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
124 125 126 127


def grad_var_name(var_name):
    """
128 129
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
130 131 132
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
133

134
def convert_np_dtype_to_dtype_(np_dtype):
135 136
    """
    Convert the data type in numpy to the data type in Paddle
137

138
    Args:
139
        np_dtype(np.dtype): the data type in numpy.
140

141 142
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
143 144

    """
145 146
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
147
        return core.VarDesc.VarType.FP32
148
    elif dtype == np.float64:
149
        return core.VarDesc.VarType.FP64
150
    elif dtype == np.float16:
151
        return core.VarDesc.VarType.FP16
152
    elif dtype == np.int32:
153
        return core.VarDesc.VarType.INT32
154
    elif dtype == np.int16:
155
        return core.VarDesc.VarType.INT16
156
    elif dtype == np.int64:
157
        return core.VarDesc.VarType.INT64
158
    elif dtype == np.bool:
159
        return core.VarDesc.VarType.BOOL
160 161
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
162 163
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
164 165
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
166
    else:
M
minqiyang 已提交
167
        raise ValueError("Not supported numpy dtype %s" % dtype)
168 169 170


def dtype_is_floating(dtype):
171 172 173
    """
    Check the data type is floating or not.
    Args:
174
        dtype(np.dtype|core.VarDesc.VarType): data type.
175 176 177 178 179
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
180
    if not isinstance(dtype, core.VarDesc.VarType):
181 182
        dtype = convert_np_dtype_to_dtype_(dtype)

183 184 185 186
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
187 188


Y
Yang Yang(Tony) 已提交
189
def _debug_string_(proto, throw_on_error=True):
190 191 192 193 194 195 196 197 198 199 200
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
201
    error_fields = list()
Y
Yang Yang(Tony) 已提交
202
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
203 204
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
205 206 207
    return proto.__str__()


Y
Yu Yang 已提交
208
class Variable(object):
209
    """
210 211 212
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
213
    two variables in different blocks could have the same name.
214

215 216
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
217

218
    Most of a Variable's member variables can be setted to be None. It mean
219
    it is not available or will be specified later.
220 221

    Args:
222
        block(Block): The block that the variable belongs to.
223 224
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
225 226
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
227
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
228
            Some kinds of variable do not contain shape, just set it to None.
229 230 231
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
232
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
233
            series data.
234
            Default: None
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
257 258
    """

Y
Yu Yang 已提交
259 260
    def __init__(self,
                 block,
Y
Yu Yang 已提交
261
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
262 263 264 265
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
266
                 capacity=None,
Q
QI JUN 已提交
267
                 persistable=None,
F
fengjiayi 已提交
268
                 error_clip=None,
Y
Yu Yang 已提交
269
                 stop_gradient=False,
F
fengjiayi 已提交
270
                 is_data=False,
Y
Yu Yang 已提交
271
                 **kwargs):
Y
Yu Yang 已提交
272
        self.block = block
F
fengjiayi 已提交
273
        self.error_clip = error_clip
Y
Yu Yang 已提交
274 275

        if name is None:
Y
Yu Yang 已提交
276
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
277
        is_new_var = False
M
minqiyang 已提交
278
        name = cpt.to_text(name)
M
minqiyang 已提交
279
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
280 281

        if self.desc is None:
M
minqiyang 已提交
282
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
283
            is_new_var = True
Y
Yu Yang 已提交
284

Y
Yu Yang 已提交
285 286 287 288 289 290 291 292
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
293
        if shape is not None:
Y
Yu Yang 已提交
294
            if is_new_var:
295
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
296 297 298 299 300 301 302 303
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
304
        if dtype is not None:
305
            if not isinstance(dtype, core.VarDesc.VarType):
306
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
307
            if is_new_var:
F
fengjiayi 已提交
308
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
309
            else:
F
fengjiayi 已提交
310
                old_dtype = self.dtype
Q
QI JUN 已提交
311
                if dtype != old_dtype:
Y
Yu Yang 已提交
312 313 314 315 316
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
317 318

        if lod_level is not None:
Y
Yu Yang 已提交
319
            if is_new_var:
320
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
321 322 323 324 325 326 327
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
328 329 330 331 332 333 334 335 336 337 338
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

339 340 341 342 343 344 345 346
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
347
        self.block.vars[name] = self
Y
Yu Yang 已提交
348
        self.op = None
Y
Yu Yang 已提交
349
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
350
        self.is_data = is_data
Y
Yu Yang 已提交
351

352
    def __str__(self):
Y
Yang Yang(Tony) 已提交
353 354
        return self.to_string(True)

F
update  
fengjiayi 已提交
355
    def to_string(self, throw_on_error, with_details=False):
356 357 358 359
        """
        Get debug string.

        Args:
360 361
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
362
            with_details(bool): more details about variables and parameters
363 364
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
365

366 367
        Returns:
            str: The debug string.
368
        """
F
update  
fengjiayi 已提交
369 370
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
371
        protostr = self.desc.serialize_to_string()
372
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
373 374 375 376
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
377 378
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
379
        return res_str
380 381 382

    __repr__ = __str__

W
Wu Yi 已提交
383
    def _set_desc(self, input):
384 385 386 387 388 389 390 391 392
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
393 394
        self.desc = input

395 396 397 398
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
399 400 401 402
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
403 404
    @property
    def name(self):
M
minqiyang 已提交
405
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
406

T
typhoonzero 已提交
407 408 409 410
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
411 412 413
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
414
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
415 416

    @property
F
fengjiayi 已提交
417 418
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
419 420 421

    @property
    def lod_level(self):
422
        return self.desc.lod_level()
Y
Yu Yang 已提交
423

Y
Yu Yang 已提交
424 425 426 427
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
428
    def _set_error_clip(self, error_clip):
429 430 431 432 433 434 435 436 437
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
438 439
        self.error_clip = error_clip

Y
Yu Yang 已提交
440

F
fengjiayi 已提交
441 442 443
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
444

445 446
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
447 448 449 450
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
451
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
452 453 454 455 456
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
457 458 459 460
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
461 462 463 464 465 466 467 468 469
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
470
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
471 472 473 474 475 476
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
477 478 479 480 481 482 483 484
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
485 486
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
487 488
        return self.op_proto_map[type]

489 490 491 492 493 494 495
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
496

Y
Yu Yang 已提交
497
class Operator(object):
498
    """
499 500 501 502 503 504 505
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
506
        type(str): The type of operator. Default None.
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
527
        Block.append_op or Block._prepend_op instead.
528 529 530 531 532 533 534 535 536 537

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
538
    """
539 540 541 542 543
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
544
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
545
    }
546

Y
Yu Yang 已提交
547 548
    def __init__(self,
                 block,
Y
Yu Yang 已提交
549
                 desc,
Y
Yu Yang 已提交
550 551 552 553 554
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
555
        self.desc = desc
G
gongweibao 已提交
556 557 558 559 560
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
561 562 563 564
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
565 566
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
567 568 569

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
570 571
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
572

G
gongweibao 已提交
573 574
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
575

576 577 578 579
        callstack_var_name = op_maker.kOpCreationCallstackAttrName()
        op_attrs[callstack_var_name] = list(
            reversed(traceback.format_stack()))[1:]

F
fengjiayi 已提交
580 581 582 583 584
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
585
        self.desc.set_type(type)
F
fengjiayi 已提交
586
        proto = OpProtoHolder.instance().get_op_proto(type)
587

588 589 590
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
591 592
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
593
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
594 595
                    return True
            return False
Q
QI JUN 已提交
596

Y
Yang Yang(Tony) 已提交
597 598 599 600 601 602 603
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
604 605 606 607
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
608 609
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
610 611 612
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
613
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
614
                            in_arg_names.append(arg)
615 616
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
617
                        else:
M
minqiyang 已提交
618
                            in_arg_names.append(cpt.to_text(arg.name))
619
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
620 621
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
622

Y
Yu Yang 已提交
623
        if outputs is not None:
624 625 626 627 628 629 630
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
631 632
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
633 634 635
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
636

F
fengjiayi 已提交
637
            for out_proto in proto.outputs:
638 639 640 641
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
642 643
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
644 645 646
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
647
                    out_arg_names.append(cpt.to_text(arg.name))
648 649
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
650

G
gongweibao 已提交
651 652
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
653
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
654
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
655
                attr_name = attr.name
G
gongweibao 已提交
656
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
657
                    continue
G
gongweibao 已提交
658
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
659 660
                self._update_desc_attr(attr_name, attr_val)

661
        self.desc.check_attrs()
662
        if self.has_kernel(type):
Q
QI JUN 已提交
663
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
664
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
665

666 667 668
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
669
    def to_string(self, throw_on_error):
670
        """
671 672
        Get debug string.

673
        Args:
674 675
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
676

677 678
        Returns:
            str: The debug string.
679 680

        """
681
        protostr = self.desc.serialize_to_string()
682
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
683 684 685 686
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
687 688 689

    __repr__ = __str__

F
fengjiayi 已提交
690 691 692 693 694
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
695
        """
696
        Get the input arguments according to the input parameter name.
697

698 699
        Args:
            name(str): The input parameter name.
700

701 702 703
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
704
        """
F
fengjiayi 已提交
705 706
        return self.desc.input(name)

T
typhoonzero 已提交
707
    def rename_input(self, old_name, new_name):
708 709 710 711 712 713 714 715 716 717
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
718 719 720
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
721 722 723 724 725 726 727 728 729 730
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
731 732
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
733 734 735 736
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
737 738 739 740 741 742 743 744
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
745
    def output(self, name):
746
        """
747
        Get output arguments by the output parameter name.
748

749 750
        Args:
            name(str): The output parameter name.
751

752 753 754
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
755
        """
F
fengjiayi 已提交
756 757 758 759 760 761
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

762 763 764 765 766 767 768 769
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
770
    def has_attr(self, name):
771
        """
772 773
        Whether this Operator has the attribute with name or not.

774
        Args:
775
            name(str): the attribute name.
776

777 778
        Returns:
            bool: True if has this attribute.
779 780

        """
F
fengjiayi 已提交
781 782 783
        return self.desc.has_attr(name)

    def attr_type(self, name):
784
        """
785
        Get the type of attribute by attribute's name.
786

787 788
        Args:
            name(str): the attribute name.
789

790 791
        Returns:
            core.AttrType: the attribute type.
792
        """
F
fengjiayi 已提交
793 794
        return self.desc.attr_type(name)

Y
yuyang18 已提交
795
    def set_attr(self, name, val):
796 797 798 799 800 801 802 803 804 805
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
819 820
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
821 822
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
823
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
824 825 826 827 828
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
829

F
fengjiayi 已提交
830 831 832 833 834
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
835
        """
836 837
        Get the attribute by name.

838
        Args:
839
            name(str): the attribute name.
840

841 842
        Returns:
            bool|int|str|float|list: The attribute value. The return value
843 844
            can be any valid attribute type.
        """
F
fengjiayi 已提交
845
        return self.desc.attr(name)
Y
Yu Yang 已提交
846

G
gongweibao 已提交
847
    def block_attr_id(self, name):
848
        """
G
gongweibao 已提交
849
        Get the block attribute's id by name.
850

851 852
        Args:
            name(str): the attribute name.
853

854 855
        Returns:
            int: the block index.
856
        """
G
gongweibao 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
903

J
JiayiFeng 已提交
904
    def all_attrs(self):
F
fengjiayi 已提交
905
        """
906 907 908
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
909
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
910 911 912 913
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
914 915
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
916
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
917 918 919 920 921 922 923 924
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
925 926
        return attr_map

Y
Yu Yang 已提交
927

Y
Yu Yang 已提交
928
class Block(object):
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
958
    def __init__(self, program, idx):
Y
Yu Yang 已提交
959
        self.desc = program.desc.block(idx)
960
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
961
        self.ops = list()  # operator list
Y
Yu Yang 已提交
962
        self.program = program
963
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
964

965
    def __str__(self):
Y
Yang Yang(Tony) 已提交
966 967
        return self.to_string(True)

F
fengjiayi 已提交
968 969
    def to_string(self, throw_on_error, with_details=False):
        """
970 971
        Get debug string.

F
fengjiayi 已提交
972 973
        Args:
            throw_on_error(bool): raise exception when self is not initialized
974
                when throw_on_error is True.
F
update  
fengjiayi 已提交
975
            with_details(bool): more details about variables and parameters
976 977
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
978

979 980
        Returns:
            str: The debug string.
F
fengjiayi 已提交
981 982 983 984
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
985
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
986 987
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
988
            for var in list(self.vars.values()):
F
fengjiayi 已提交
989
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
990
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
991
            for op in self.ops:
F
fengjiayi 已提交
992 993
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
994 995 996
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
997 998
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
999 1000
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1001 1002 1003

    __repr__ = __str__

Y
Yu Yang 已提交
1004 1005
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1006
        return self.desc.parent
Y
Yu Yang 已提交
1007

Y
Yu Yang 已提交
1008 1009 1010 1011
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1012
    def _set_forward_block_idx(self, idx):
1013 1014 1015 1016 1017 1018 1019 1020 1021
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1022
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1023

Y
Yu Yang 已提交
1024 1025
    @property
    def idx(self):
Y
Yu Yang 已提交
1026
        return self.desc.id
Y
Yu Yang 已提交
1027

Q
Qiao Longfei 已提交
1028
    def var(self, name):
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1042
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1043 1044 1045
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1046 1047
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1048
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1049
        return v
Q
Qiao Longfei 已提交
1050

W
Wu Yi 已提交
1051
    def _var_recursive(self, name):
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1091

Q
Qiao Longfei 已提交
1092
    def all_parameters(self):
1093
        return list(self.iter_parameters())
1094

1095
    def iter_parameters(self):
M
minqiyang 已提交
1096
        return (item[1] for item in six.iteritems(self.vars)
1097
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1098

Y
Yu Yang 已提交
1099
    def create_var(self, *args, **kwargs):
1100
        var = Variable(block=self, *args, **kwargs)
1101 1102
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1103
        return var
Y
Yu Yang 已提交
1104

Q
Qiao Longfei 已提交
1105 1106 1107
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1108
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1109 1110
        """
        Rename variable in vars and ops' inputs and outputs
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1123
        """
M
minqiyang 已提交
1124 1125
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1126

T
typhoonzero 已提交
1127
        if not self.has_var(name):
1128
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1129 1130
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1131
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1132 1133 1134 1135 1136 1137 1138
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1139
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1140 1141 1142 1143
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1144
        orig_var_type = v.type
M
minqiyang 已提交
1145
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1146
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1147
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1148
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1149 1150 1151 1152
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1153
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1154 1155 1156 1157 1158 1159 1160
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1161
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1162 1163
            var = Variable(
                self,
T
typhoonzero 已提交
1164
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1165 1166 1167 1168
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1169
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1170 1171 1172
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1173
        self._sync_with_cpp()
1174
        return var
T
typhoonzero 已提交
1175

W
Wu Yi 已提交
1176 1177
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1178
        self.desc._remove_var(cpt.to_bytes(name))
1179 1180
        del self.vars[name]

Y
Yu Yang 已提交
1181 1182
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1183
        param = Parameter(global_block, *args, **kwargs)
1184
        if 'initializer' in kwargs:
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1205
        return param
Y
Yu Yang 已提交
1206

Y
Yu Yang 已提交
1207
    def append_op(self, *args, **kwargs):
1208 1209 1210 1211 1212 1213
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1214
        op_desc = self.desc.append_op()
1215
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1216 1217 1218
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1219
    def _insert_op(self, index, *args, **kwargs):
1220 1221 1222 1223 1224 1225 1226 1227 1228
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1229 1230
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1231 1232 1233 1234
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1235
    def _remove_op(self, index):
1236 1237 1238 1239 1240 1241 1242 1243 1244
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1245 1246
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1247 1248
        del self.ops[index]

W
Wu Yi 已提交
1249
    def _slice_ops(self, start, end):
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1260
        return self.ops[start:end]
Y
Yancey1989 已提交
1261

W
Wu Yi 已提交
1262 1263
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1264
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1265
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1266 1267
        return op

W
Wu Yi 已提交
1268
    def _sync_with_cpp(self):
1269
        """
1270 1271
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1272
        """
Q
Qiao Longfei 已提交
1273 1274 1275 1276 1277
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1278
        # sync variables removed from c++ end
1279
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1280
            if not self.desc.find_var(cpt.to_bytes(var)):
1281 1282
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1283
        # sync operators from cpp
1284 1285 1286 1287
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1304 1305 1306 1307 1308

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1309
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1310 1311 1312 1313 1314 1315 1316

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1330 1331 1332 1333
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1334
    def _copy_param_info_from(self, other):
1335
        """
1336 1337
        Copy the information of parameters from the other block.

1338
        Args:
1339 1340 1341 1342 1343
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1344 1345 1346 1347 1348

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1349 1350
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1351
        for p in other.iter_parameters():
1352 1353 1354
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1355
                raise ValueError("_copy_param_info_from should be invoked with "
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1368
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1369
                error_clip=p.error_clip,
1370 1371 1372
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1373
    def _clone_variable(self, var):
1374 1375
        """
        Clone a variable into current block.
1376

1377 1378 1379 1380
        Args:
            var: the variable to be cloned.

        Returns:
1381
            Variable: the new  variable cloned from 'var' in current block.
1382 1383
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1384 1385 1386 1387 1388
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1389 1390
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1391
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1392 1393 1394 1395 1396 1397
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1398 1399
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1400 1401 1402 1403 1404 1405 1406
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1407 1408
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1409
        return ret_var
1410

Y
Yu Yang 已提交
1411 1412

class Program(object):
D
dzhwinter 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1424
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1425 1426

    Returns:
Y
yuyang18 已提交
1427
        A empty program.
D
dzhwinter 已提交
1428 1429

    Examples:
Y
yuyang18 已提交
1430 1431 1432 1433 1434 1435
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1436 1437 1438

    """

1439 1440
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1441 1442
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1443
        self._seed = 0
Y
yuyang18 已提交
1444
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1445
        self._op_role_var = []
T
tangwei12 已提交
1446 1447 1448 1449

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1450
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1451 1452
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1453 1454 1455

    @property
    def op_role(self):
Y
yuyang18 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1469 1470 1471 1472 1473 1474 1475 1476
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1477 1478 1479 1480 1481 1482 1483
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1484 1485 1486 1487
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1488
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1489 1490

    @contextlib.contextmanager
1491
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1492 1493 1494 1495 1496 1497 1498
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1499
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1500 1501 1502 1503

        Examples:

            >>> p, g = backward(...)
1504
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1505 1506
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1507 1508
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1509 1510 1511 1512
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1513
        yield
Y
yuyang18 已提交
1514
        self._op_role_var = []
Y
yuyang18 已提交
1515
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1516

1517
    def __str__(self):
Y
yuyang18 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1527 1528
        return self.to_string(True)

F
fengjiayi 已提交
1529 1530 1531
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1532

F
fengjiayi 已提交
1533
        Args:
Y
yuyang18 已提交
1534 1535
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1536

Y
yuyang18 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1557 1558
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1559 1560
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1561

1562
    def get_desc(self):
Y
yuyang18 已提交
1563 1564 1565 1566 1567 1568 1569
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1570 1571
        return self.desc

1572
    def clone(self, for_test=False):
Y
yuyang18 已提交
1573 1574 1575
        """
        Create a new, duplicated program.

1576

Y
yuyang18 已提交
1577 1578 1579 1580
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1581

Y
yuyang18 已提交
1582 1583 1584 1585
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1586 1587 1588 1589 1590
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1591 1592

        Args:
Y
yuyang18 已提交
1593 1594
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1595

D
dzhwinter 已提交
1596
        Returns:
Y
yuyang18 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1650 1651
        """
        if for_test:
1652
            p = self.inference_optimize(export_for_deployment=False)
1653
        else:
1654
            p = Program()
G
gongweibao 已提交
1655 1656
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1657
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1658 1659 1660
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1661 1662 1663 1664

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1665
            p._sync_with_cpp()
1666

W
Wu Yi 已提交
1667
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1668
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1669
        return p
1670

1671
    def prune(self, targets):
Y
yuyang18 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1687 1688 1689 1690 1691 1692
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1693 1694
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1695
                    # and we need to find the current op that generate this
1696 1697 1698 1699 1700 1701 1702 1703
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1704
                    t = t.op
1705 1706 1707 1708
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1709
                else:
1710 1711
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1712 1713 1714 1715

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1716 1717 1718
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1719
        res._sync_with_cpp()
1720 1721
        return res

1722
    def inference_optimize(self, export_for_deployment=True):
Y
yuyang18 已提交
1723
        """
F
fengjiayi 已提交
1724 1725 1726 1727 1728
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1729
        3. change the :code:`is_test`
Y
yuyang18 已提交
1730 1731 1732
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1733 1734 1735 1736
        Args:
            export_for_deployment(bool): remove the read ops that are added by py_reader
                                        for cpp inference library

Y
yuyang18 已提交
1737 1738 1739 1740 1741 1742
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1743 1744
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1745
        res = Program()
1746
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1747 1748 1749 1750

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
        if export_for_deployment:
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1761
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1762 1763

        # change all `is_test` attributes to True
M
minqiyang 已提交
1764
        for i in six.moves.range(res.desc.num_blocks()):
1765
            block = res.desc.block(i)
M
minqiyang 已提交
1766
            for j in six.moves.range(block.op_size()):
1767 1768 1769
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1770 1771 1772
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1773
        res._sync_with_cpp()
1774 1775
        return res

1776 1777
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1778 1779 1780 1781 1782 1783 1784
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1785
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1786 1787 1788 1789

        Returns:
            Program: A deserialized program desc.
        """
1790 1791
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1792
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1793
        p._sync_with_cpp()
1794
        return p
Y
Yu Yang 已提交
1795

D
dzhwinter 已提交
1796 1797
    @property
    def random_seed(self):
Y
yuyang18 已提交
1798 1799 1800 1801 1802 1803
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1804 1805
        return self._seed

Q
qiaolongfei 已提交
1806 1807
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1808 1809 1810
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1811 1812
        return self.desc.num_blocks()

D
dzhwinter 已提交
1813 1814 1815 1816 1817 1818
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1819
    def __repr__(self):
1820
        return self.__str__()
1821

Y
Yu Yang 已提交
1822
    def global_block(self):
Y
yuyang18 已提交
1823 1824 1825
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1826 1827
        return self.blocks[0]

Q
Qiao Longfei 已提交
1828
    def block(self, index):
Y
yuyang18 已提交
1829 1830 1831 1832 1833 1834 1835 1836
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1837 1838
        return self.blocks[index]

Y
Yu Yang 已提交
1839
    def current_block(self):
Y
yuyang18 已提交
1840 1841 1842 1843
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1844 1845
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1846
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1857
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1858 1859 1860
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1861 1862 1863 1864 1865
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1866 1867 1868 1869 1870
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1871 1872
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1873
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1884 1885 1886
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1887
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1888

W
Wu Yi 已提交
1889
    def _copy_param_info_from(self, other):
1890
        """
1891
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1892

Y
yuyang18 已提交
1893 1894 1895
        Notes: This is a very low level API. Users should not invoke it
        directly.

1896 1897 1898 1899 1900 1901 1902
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1903
            raise TypeError("_copy_param_info_from should be invoked with "
1904 1905 1906
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1907
            raise ValueError("_copy_param_info_from should be invoked with two "
1908
                             "program, with represent the same topology")
W
Wu Yi 已提交
1909
        self.global_block()._copy_param_info_from(other.global_block())
1910

F
fengjiayi 已提交
1911 1912 1913
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1914

Y
yuyang18 已提交
1915 1916 1917
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1918 1919 1920 1921 1922 1923 1924
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1925
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1926 1927 1928
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1929
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1930
                             "program, with represent the same topology")
1931
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1932 1933 1934
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1935
    def list_vars(self):
Y
yuyang18 已提交
1936 1937 1938 1939 1940 1941
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1942
        for each_block in self.blocks:
1943
            for each_var in list(each_block.vars.values()):
1944 1945
                yield each_var

Y
Yu Yang 已提交
1946

Y
Yu Yang 已提交
1947
class Parameter(Variable):
1948
    """
1949
    Parameter is derived from Variable. A parameter is a persistable
1950
    Variable, and will be updated by optimizers after each iteration.
1951
    The training of a neural network is essentially the updating of
1952 1953
    its parameters.

1954
    Relative to a general Variable, a Parameter has several its own
1955 1956
    member variables:

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1969 1970
    """

Y
Yu Yang 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1981 1982 1983

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1984 1985 1986 1987
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1988 1989
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1990
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1991

W
wanghaoshuang 已提交
1992
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1993

F
fengjiayi 已提交
1994 1995 1996
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1997 1998 1999
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2000

F
update  
fengjiayi 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2015
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2016
            for attr_name in additional_attr:
2017 2018
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2019 2020
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2021 2022 2023 2024
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2025

Y
Yu Yang 已提交
2026
# program is a global instance.
Y
Yu Yang 已提交
2027 2028
_main_program_ = Program()
_startup_program_ = Program()
2029

2030

2031
def default_startup_program():
Y
Yu Yang 已提交
2032
    """
Y
yuyang18 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2042

Y
Yu Yang 已提交
2043 2044 2045
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2046
    return _startup_program_
2047

2048

2049
def default_main_program():
Y
Yu Yang 已提交
2050
    """
Y
yuyang18 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2060

Y
Yu Yang 已提交
2061 2062 2063
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2064
    return _main_program_
Y
Yu Yang 已提交
2065 2066 2067 2068 2069


def switch_main_program(program):
    """
    Switch the main program to a new program.
2070

Y
Yu Yang 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2085
    Switch the startup program to a new program
Y
Yu Yang 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2101 2102 2103
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2104

Y
Yu Yang 已提交
2105
    Examples:
Y
yuyang18 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2116

Y
Yu Yang 已提交
2117
    Examples:
Y
yuyang18 已提交
2118 2119 2120 2121 2122 2123

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2124

Y
Yu Yang 已提交
2125
    Args:
Y
yuyang18 已提交
2126
        main_program(Program): New main program inside `with` statement.
2127
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2141 2142 2143 2144


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2145
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2146

X
xuwei06 已提交
2147 2148 2149
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2150
        If None, default_global_program() will be used.
X
xuwei06 已提交
2151 2152 2153 2154 2155 2156 2157

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2158
    assert isinstance(program, Program)
X
xuwei06 已提交
2159 2160

    return program.global_block().var(name)