operator.h 8.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

Q
qijun 已提交
22 23
#include "paddle/framework/attr_checker.h"
#include "paddle/framework/op_desc.pb.h"
Y
Yan Chunwei 已提交
24
#include "paddle/framework/op_proto.pb.h"
Q
qijun 已提交
25 26 27 28 29
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

Q
qijun 已提交
34 35 36 37
template <typename T>
struct EigenDeviceConverter;

template <>
Q
qijun 已提交
38
struct EigenDeviceConverter<platform::CPUPlace> {
Q
qijun 已提交
39 40 41 42 43
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
Q
qijun 已提交
44
struct EigenDeviceConverter<platform::GPUPlace> {
Q
qijun 已提交
45 46 47 48
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

Q
Qiao Longfei 已提交
49 50 51 52 53 54 55 56 57
class OperatorBase;
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
58 59 60 61 62 63 64
  /// If a variable is a empty variable, that name will be used.
  static std::string EMPTY_VAR_NAME() { return "@EMPTY@"; }

  /// If a variable is a temporary variable, that name will be set in Python,
  /// but it will be convert to a unique name in scope after OpCreator.
  static std::string TMP_VAR_NAME() { return "@TEMP@"; }

F
fengjiayi 已提交
65 66 67 68 69
  /// If a variable's name has a certain suffix, it means that the
  /// variable is the gradient of another varibale.
  /// e.g. Variable "x@GRAD" is the gradient of varibale "x".
  static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; }

Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77 78
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

79
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
80

Q
Qiao Longfei 已提交
81 82 83 84
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
85 86
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
87
  virtual void InferShape(const std::shared_ptr<Scope>& scope) const = 0;
Q
Qiao Longfei 已提交
88 89

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
90
  virtual void Run(const std::shared_ptr<Scope>& scope,
Y
Yu Yang 已提交
91 92
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yan Chunwei 已提交
93 94 95 96 97 98 99 100 101 102 103
  // Get a input with argument's name described in `op_proto`
  const std::string& Input(const std::string& name) const;
  // Get a input which has multiple variables.
  // TODO add a vector_view to prevent memory copy.
  std::vector<std::string> Inputs(const std::string& name) const;
  // Get a output with argument's name described in `op_proto`
  const std::string& Output(const std::string& name) const;
  // Get an output which has multiple variables.
  // TODO add a vector_view to prevent memory copy.
  std::vector<std::string> Outputs(const std::string& name) const;

Q
Qiao Longfei 已提交
104
 public:
Q
Qiao Longfei 已提交
105
  std::string type_;
Q
Qiao Longfei 已提交
106 107 108
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
109
  // store the arguments' offset described in op_desc.
Y
Yu Yang 已提交
110
  std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
Y
Yan Chunwei 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
};

class KernelContext {
 public:
  KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
                const platform::DeviceContext& device_context)
      : op_(*op), scope_(scope), device_context_(device_context) {}

  const Variable* Input(int index) const {
    return scope_->GetVariable(op_.inputs_[index]);
  }

  Variable* Output(int index) const {
    return scope_->GetVariable(op_.outputs_[index]);
  }

  const Variable* Input(const std::string& name) const {
    return scope_->GetVariable(op_.Input(name));
  }

  const Variable* Output(const std::string& name) const {
    return scope_->GetVariable(op_.Output(name));
  }

  const std::vector<const Variable*> Inputs(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
    std::transform(
        names.begin(), names.end(), res.begin(),
        [this](const std::string& name) { return scope_->GetVariable(name); });
    return res;
  }

  const std::vector<const Variable*> Outputs(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
    std::transform(
        names.begin(), names.end(), res.begin(),
        [this](const std::string& name) { return scope_->GetVariable(name); });
    return res;
  }

Q
qijun 已提交
153 154 155 156 157 158 159
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
  DeviceType* GetEigenDevice() const;

  platform::Place GetPlace() const { return device_context_.GetPlace(); }

Y
Yan Chunwei 已提交
160 161 162
  const OperatorBase& op_;
  const std::shared_ptr<Scope>& scope_;
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
163 164
};

Q
qijun 已提交
165 166
class OpKernel {
 public:
Q
qijun 已提交
167 168 169 170 171 172 173
  /**
   * KernelContext is the only parameter of Kernel Run function.
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
   * KernelContext. User should construct it before run the Operator.
   */

Y
Yu Yang 已提交
174 175 176 177 178
  virtual void Compute(const KernelContext& context) const = 0;

  virtual ~OpKernel() {}
};

Y
Yu Yang 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191
template <typename T>
struct VarToTensor {};

template <>
struct VarToTensor<Tensor*> {
  Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
};

template <>
struct VarToTensor<const Tensor*> {
  const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
};

Q
Qiao Longfei 已提交
192 193
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
194 195
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
196

Y
Yu Yang 已提交
197 198 199 200 201
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
202 203 204
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
205 206 207 208 209 210 211 212 213 214 215
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
216

Y
Yu Yang 已提交
217
  void Run(const std::shared_ptr<Scope>& scope,
Y
Yu Yang 已提交
218
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
219
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
Y
Yan Chunwei 已提交
220
    opKernel->Compute(KernelContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
221 222
  }

Y
Yu Yang 已提交
223 224 225 226
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
227
  }
Y
Yan Chunwei 已提交
228

Y
Yu Yang 已提交
229 230 231 232 233 234
  void InferShape(const std::shared_ptr<Scope>& scope) const final {
    std::vector<const Tensor*> ins;
    VarNamesToTensors(scope, inputs_, &ins);
    std::vector<Tensor*> outs;
    VarNamesToTensors(scope, outputs_, &outs);
    InferShape(ins, outs);
Y
Yu Yang 已提交
235
  };
Y
Yu Yang 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

 private:
  template <typename T>
  void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
                         const std::vector<std::string>& var_names,
                         std::vector<T>* container) const {
    container->reserve(var_names.size());
    VarToTensor<T> convert;
    for (auto& name : var_names) {
      auto var = scope->GetVariable(name);
      if (var != nullptr) {
        container->push_back(convert(var));
      } else {
        container->push_back(nullptr);
      }
    }
  }

 protected:
  virtual void InferShape(const std::vector<const Tensor*>& inputs,
                          const std::vector<Tensor*>& outputs) const = 0;
Q
Qiao Longfei 已提交
257 258 259 260
};

}  // namespace framework
}  // namespace paddle