mot_sde_infer.py 26.0 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
F
Feng Ni 已提交
20
from collections import defaultdict
G
George Ni 已提交
21

F
Feng Ni 已提交
22
import paddle
G
George Ni 已提交
23 24
from paddle.inference import Config
from paddle.inference import create_predictor
F
Feng Ni 已提交
25

26
from picodet_postprocess import PicoDetPostProcess
G
George Ni 已提交
27
from utils import argsparser, Timer, get_current_memory_mb
28
from infer import Detector, DetectorPicoDet, get_test_images, print_arguments, PredictConfig
29
from infer import load_predictor
F
Feng Ni 已提交
30 31 32 33 34
from benchmark_utils import PaddleInferBenchmark

from ppdet.modeling.mot.tracker import DeepSORTTracker
from ppdet.modeling.mot.visualization import plot_tracking
from ppdet.modeling.mot.utils import MOTTimer, write_mot_results
G
George Ni 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}


def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


def scale_coords(coords, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
    coords[:, 0:4] /= ratio
    coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
    return coords.round()


def clip_box(xyxy, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]
    xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=img0_shape[1])
    xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=img0_shape[0])
75 76 77 78 79
    w = xyxy[:, 2:3] - xyxy[:, 0:1]
    h = xyxy[:, 3:4] - xyxy[:, 1:2]
    mask = np.logical_and(h > 0, w > 0)
    keep_idx = np.nonzero(mask)
    return xyxy[keep_idx[0]], keep_idx
G
George Ni 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
        img = cv2.resize(img, (w, h))
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch


101
class SDE_Detector(Detector):
G
George Ni 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
122
                 batch_size=1,
G
George Ni 已提交
123 124 125 126 127 128
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
129 130 131
        super(SDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
G
George Ni 已提交
132
            device=device,
133 134
            run_mode=run_mode,
            batch_size=batch_size,
G
George Ni 已提交
135 136 137 138 139 140
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
141
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
142
        self.pred_config = pred_config
G
George Ni 已提交
143

144 145
    def postprocess(self, boxes, input_shape, im_shape, scale_factor, threshold,
                    scaled):
146 147 148 149 150
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
151 152
        else:
            boxes = boxes[over_thres_idx]
153

154
        if not scaled:
155 156 157
            # scaled means whether the coords after detector outputs
            # have been scaled back to the original image, set True 
            # in general detector, set False in JDE YOLOv3.
158 159 160 161 162
            pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
                                       scale_factor)
        else:
            pred_bboxes = boxes[:, 2:]

163 164
        pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                        scale_factor)
165 166 167 168 169
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

170 171 172 173 174 175 176 177 178
        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

179
        return pred_dets, pred_xyxys
G
George Ni 已提交
180

181
    def predict(self, image, scaled, threshold=0.5, warmup=0, repeats=1):
G
George Ni 已提交
182 183 184 185
        '''
        Args:
            image (np.ndarray): image numpy data
            threshold (float): threshold of predicted box' score
186 187
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
G
George Ni 已提交
188
        Returns:
189
            pred_dets (np.ndarray, [N, 6])
G
George Ni 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
215 216 217 218 219 220 221 222 223 224 225
        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape']
            scale_factor = inputs['scale_factor']

            pred_dets, pred_xyxys = self.postprocess(
                boxes, input_shape, im_shape, scale_factor, threshold, scaled)

G
George Ni 已提交
226 227
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
228
        return pred_dets, pred_xyxys
G
George Ni 已提交
229 230


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
class SDE_DetectorPicoDet(DetectorPicoDet):
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_DetectorPicoDet, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
        self.pred_config = pred_config

    def postprocess_bboxes(self, boxes, input_shape, im_shape, scale_factor, threshold):
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        pred_bboxes = boxes[:, 2:]

        pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                        scale_factor)
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)
        return pred_dets, pred_xyxys

    def predict(self, image, scaled, threshold=0.5, warmup=0, repeats=1):
        '''
        Args:
            image (np.ndarray): image numpy data
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
        Returns:
            pred_dets (np.ndarray, [N, 6])
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        np_score_list, np_boxes_list = [], []
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())

        self.det_times.inference_time_s.end(repeats=repeats)
        self.det_times.img_num += 1
        self.det_times.postprocess_time_s.start()
        self.postprocess = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        boxes, boxes_num = self.postprocess(np_score_list, np_boxes_list)

        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape']
            scale_factor = inputs['scale_factor']
            pred_dets, pred_xyxys = self.postprocess_bboxes(
                boxes, input_shape, im_shape, scale_factor, threshold)

        return pred_dets, pred_xyxys
        

367
class SDE_ReID(object):
G
George Ni 已提交
368 369 370 371 372
    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
373
                 batch_size=50,
G
George Ni 已提交
374 375 376 377 378 379 380 381 382 383
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
384
            batch_size=batch_size,
G
George Ni 已提交
385 386 387 388 389 390 391 392 393 394 395
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
396
        self.batch_size = batch_size
397
        assert pred_config.tracker, "Tracking model should have tracker"
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        pt = pred_config.tracker
        max_age = pt['max_age'] if 'max_age' in pt else 30
        max_iou_distance = pt[
            'max_iou_distance'] if 'max_iou_distance' in pt else 0.7
        self.tracker = DeepSORTTracker(
            max_age=max_age, max_iou_distance=max_iou_distance)

    def get_crops(self, xyxy, ori_img):
        w, h = self.tracker.input_size
        self.det_times.preprocess_time_s.start()
        crops = []
        xyxy = xyxy.astype(np.int64)
        ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
        for i, bbox in enumerate(xyxy):
            crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
            crops.append(crop)
        crops = preprocess_reid(crops, w, h)
        self.det_times.preprocess_time_s.end()

        return crops
G
George Ni 已提交
418 419

    def preprocess(self, crops):
420
        # to keep fast speed, only use topk crops
421
        crops = crops[:self.batch_size]
G
George Ni 已提交
422 423 424 425
        inputs = {}
        inputs['crops'] = np.array(crops).astype('float32')
        return inputs

426 427 428 429 430 431 432 433
    def postprocess(self, pred_dets, pred_embs):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)

        online_tlwhs, online_scores, online_ids = [], [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
G
George Ni 已提交
434
                continue
435 436 437 438 439 440 441 442 443 444 445
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
            if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

G
George Ni 已提交
446 447
        return online_tlwhs, online_scores, online_ids

448
    def predict(self, crops, pred_dets, warmup=0, repeats=1):
G
George Ni 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(crops)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
462
            pred_embs = feature_tensor.copy_to_cpu()
G
George Ni 已提交
463 464 465 466 467 468

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
469
            pred_embs = feature_tensor.copy_to_cpu()
G
George Ni 已提交
470 471 472
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
473 474
        online_tlwhs, online_scores, online_ids = self.postprocess(pred_dets,
                                                                   pred_embs)
G
George Ni 已提交
475 476 477
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1

478
        return online_tlwhs, online_scores, online_ids
479

G
George Ni 已提交
480 481

def predict_image(detector, reid_model, image_list):
G
George Ni 已提交
482
    image_list.sort()
G
George Ni 已提交
483 484 485
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
486
            pred_dets, pred_xyxys = detector.predict(
487
                [frame], FLAGS.scaled, FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
488 489 490 491 492 493
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
494 495
            pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                     FLAGS.threshold)
G
George Ni 已提交
496

497
        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
498 499 500
            print('Frame {} has no object, try to modify score threshold.'.
                  format(i))
            online_im = frame
G
George Ni 已提交
501
        else:
502 503 504 505 506 507 508 509 510
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            if FLAGS.run_benchmark:
                online_tlwhs, online_scores, online_ids = reid_model.predict(
                    crops, pred_dets, warmup=10, repeats=10)
            else:
                online_tlwhs, online_scores, online_ids = reid_model.predict(
                    crops, pred_dets)
F
Feng Ni 已提交
511
                online_im = plot_tracking(
512
                    frame, online_tlwhs, online_ids, online_scores, frame_id=i)
G
George Ni 已提交
513

514 515 516 517 518 519 520
        if FLAGS.save_images:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(FLAGS.output_dir, img_name)
            cv2.imwrite(out_path, online_im)
            print("save result to: " + out_path)
G
George Ni 已提交
521 522 523 524 525 526 527 528 529


def predict_video(detector, reid_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
530
    # Get Video info : resolution, fps, frame count
G
George Ni 已提交
531 532
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
533 534 535 536
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

G
George Ni 已提交
537 538 539
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
540
    if not FLAGS.save_images:
541
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
G
George Ni 已提交
542
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
G
George Ni 已提交
543 544
    frame_id = 0
    timer = MOTTimer()
F
Feng Ni 已提交
545
    results = defaultdict(list)
G
George Ni 已提交
546 547 548 549 550
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
551 552 553
        pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                 FLAGS.threshold)

554
        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
555 556 557 558 559 560 561 562 563
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            timer.toc()
            im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)
            online_tlwhs, online_scores, online_ids = reid_model.predict(
                crops, pred_dets)
F
Feng Ni 已提交
564
            results[0].append(
565 566 567 568
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
            timer.toc()

            fps = 1. / timer.average_time
F
Feng Ni 已提交
569
            im = plot_tracking(
570 571 572 573 574 575 576
                frame,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps)

G
George Ni 已提交
577 578 579 580 581
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
G
George Ni 已提交
582
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
583 584
        else:
            writer.write(im)
585

G
George Ni 已提交
586
        frame_id += 1
587 588
        print('detect frame:%d' % (frame_id))

G
George Ni 已提交
589 590 591 592
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
593

G
George Ni 已提交
594 595 596 597
    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)
G
George Ni 已提交
598 599 600

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
601 602
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
G
George Ni 已提交
603 604 605 606
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
G
George Ni 已提交
607 608 609 610


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    detector_func = 'SDE_Detector'
    if pred_config.arch == 'PicoDet':
        detector_func = 'SDE_DetectorPicoDet'

    detector = eval(detector_func)(pred_config,
                                   FLAGS.model_dir,
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
                                   enable_mkldnn=FLAGS.enable_mkldnn)
G
George Ni 已提交
626 627

    pred_config = PredictConfig(FLAGS.reid_model_dir)
628
    reid_model = SDE_ReID(
G
George Ni 已提交
629 630 631 632
        pred_config,
        FLAGS.reid_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
633
        batch_size=FLAGS.reid_batch_size,
G
George Ni 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, reid_model, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, reid_model, img_list)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            reid_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')

            reid_model_dir = FLAGS.reid_model_dir
            reid_model_info = {
                'model_name': reid_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(reid_model, img_list, reid_model_info, name='ReID')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()