mot_sde_infer.py 19.8 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
F
Feng Ni 已提交
20
from collections import defaultdict
G
George Ni 已提交
21

F
Feng Ni 已提交
22
import paddle
G
George Ni 已提交
23 24
from paddle.inference import Config
from paddle.inference import create_predictor
F
Feng Ni 已提交
25 26

from preprocess import preprocess
G
George Ni 已提交
27
from utils import argsparser, Timer, get_current_memory_mb
F
Feng Ni 已提交
28
from infer import Detector, get_test_images, print_arguments, PredictConfig
29
from infer import load_predictor
F
Feng Ni 已提交
30 31 32 33 34
from benchmark_utils import PaddleInferBenchmark

from ppdet.modeling.mot.tracker import DeepSORTTracker
from ppdet.modeling.mot.visualization import plot_tracking
from ppdet.modeling.mot.utils import MOTTimer, write_mot_results
G
George Ni 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}


def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


def scale_coords(coords, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
    coords[:, 0:4] /= ratio
    coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
    return coords.round()


def clip_box(xyxy, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]
    xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=img0_shape[1])
    xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=img0_shape[0])
75 76 77 78 79
    w = xyxy[:, 2:3] - xyxy[:, 0:1]
    h = xyxy[:, 3:4] - xyxy[:, 1:2]
    mask = np.logical_and(h > 0, w > 0)
    keep_idx = np.nonzero(mask)
    return xyxy[keep_idx[0]], keep_idx
G
George Ni 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
        img = cv2.resize(img, (w, h))
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch


101
class SDE_Detector(Detector):
G
George Ni 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
122
                 batch_size=1,
G
George Ni 已提交
123 124 125 126 127 128
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
129 130 131
        super(SDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
G
George Ni 已提交
132
            device=device,
133 134
            run_mode=run_mode,
            batch_size=batch_size,
G
George Ni 已提交
135 136 137 138 139 140
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
141
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
G
George Ni 已提交
142

143 144
    def postprocess(self, boxes, input_shape, im_shape, scale_factor, threshold,
                    scaled):
145 146 147 148 149 150
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

151
        if not scaled:
152 153 154
            # scaled means whether the coords after detector outputs
            # have been scaled back to the original image, set True 
            # in general detector, set False in JDE YOLOv3.
155 156 157 158 159
            pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
                                       scale_factor)
        else:
            pred_bboxes = boxes[:, 2:]

160 161 162 163 164 165 166 167 168 169 170 171
        pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                        scale_factor)
        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

        return pred_dets[over_thres_idx], pred_xyxys[over_thres_idx]
G
George Ni 已提交
172

173
    def predict(self, image, scaled, threshold=0.5, warmup=0, repeats=1):
G
George Ni 已提交
174 175 176 177
        '''
        Args:
            image (np.ndarray): image numpy data
            threshold (float): threshold of predicted box' score
178 179
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
G
George Ni 已提交
180
        Returns:
181
            pred_dets (np.ndarray, [N, 6])
G
George Ni 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
207 208 209 210 211 212 213 214 215 216 217
        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape']
            scale_factor = inputs['scale_factor']

            pred_dets, pred_xyxys = self.postprocess(
                boxes, input_shape, im_shape, scale_factor, threshold, scaled)

G
George Ni 已提交
218 219
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
220
        return pred_dets, pred_xyxys
G
George Ni 已提交
221 222


223
class SDE_ReID(object):
G
George Ni 已提交
224 225 226 227 228
    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
229
                 batch_size=50,
G
George Ni 已提交
230 231 232 233 234 235 236 237 238 239
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
240
            batch_size=batch_size,
G
George Ni 已提交
241 242 243 244 245 246 247 248 249 250 251
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
252
        self.batch_size = batch_size
253
        assert pred_config.tracker, "Tracking model should have tracker"
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        pt = pred_config.tracker
        max_age = pt['max_age'] if 'max_age' in pt else 30
        max_iou_distance = pt[
            'max_iou_distance'] if 'max_iou_distance' in pt else 0.7
        self.tracker = DeepSORTTracker(
            max_age=max_age, max_iou_distance=max_iou_distance)

    def get_crops(self, xyxy, ori_img):
        w, h = self.tracker.input_size
        self.det_times.preprocess_time_s.start()
        crops = []
        xyxy = xyxy.astype(np.int64)
        ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
        for i, bbox in enumerate(xyxy):
            crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
            crops.append(crop)
        crops = preprocess_reid(crops, w, h)
        self.det_times.preprocess_time_s.end()

        return crops
G
George Ni 已提交
274 275

    def preprocess(self, crops):
276
        # to keep fast speed, only use topk crops
277
        crops = crops[:self.batch_size]
G
George Ni 已提交
278 279 280 281
        inputs = {}
        inputs['crops'] = np.array(crops).astype('float32')
        return inputs

282 283 284 285 286 287 288 289
    def postprocess(self, pred_dets, pred_embs):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)

        online_tlwhs, online_scores, online_ids = [], [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
G
George Ni 已提交
290
                continue
291 292 293 294 295 296 297 298 299 300 301
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
            if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

G
George Ni 已提交
302 303
        return online_tlwhs, online_scores, online_ids

304
    def predict(self, crops, pred_dets, warmup=0, repeats=1):
G
George Ni 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(crops)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
318
            pred_embs = feature_tensor.copy_to_cpu()
G
George Ni 已提交
319 320 321 322 323 324

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
325
            pred_embs = feature_tensor.copy_to_cpu()
G
George Ni 已提交
326 327 328
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
329 330
        online_tlwhs, online_scores, online_ids = self.postprocess(pred_dets,
                                                                   pred_embs)
G
George Ni 已提交
331 332 333
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1

334
        return online_tlwhs, online_scores, online_ids
335

G
George Ni 已提交
336 337

def predict_image(detector, reid_model, image_list):
G
George Ni 已提交
338
    image_list.sort()
G
George Ni 已提交
339 340 341
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
342
            pred_dets, pred_xyxys = detector.predict(
343
                [frame], FLAGS.scaled, FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
344 345 346 347 348 349
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
350 351
            pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                     FLAGS.threshold)
G
George Ni 已提交
352

353 354 355 356
        if len(pred_dets) == 1 and sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(i))
            online_im = frame
G
George Ni 已提交
357
        else:
358 359 360 361 362 363 364 365 366
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            if FLAGS.run_benchmark:
                online_tlwhs, online_scores, online_ids = reid_model.predict(
                    crops, pred_dets, warmup=10, repeats=10)
            else:
                online_tlwhs, online_scores, online_ids = reid_model.predict(
                    crops, pred_dets)
F
Feng Ni 已提交
367
                online_im = plot_tracking(
368
                    frame, online_tlwhs, online_ids, online_scores, frame_id=i)
G
George Ni 已提交
369

370 371 372 373 374 375 376
        if FLAGS.save_images:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(FLAGS.output_dir, img_name)
            cv2.imwrite(out_path, online_im)
            print("save result to: " + out_path)
G
George Ni 已提交
377 378 379 380 381 382 383 384 385


def predict_video(detector, reid_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
386
    # Get Video info : resolution, fps, frame count
G
George Ni 已提交
387 388
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
389 390 391 392
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

G
George Ni 已提交
393 394 395
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
396
    if not FLAGS.save_images:
397
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
G
George Ni 已提交
398
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
G
George Ni 已提交
399 400
    frame_id = 0
    timer = MOTTimer()
F
Feng Ni 已提交
401
    results = defaultdict(list)
G
George Ni 已提交
402 403 404 405 406
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
407 408 409 410 411 412 413 414 415 416 417 418 419
        pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                 FLAGS.threshold)

        if len(pred_dets) == 1 and sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            timer.toc()
            im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)
            online_tlwhs, online_scores, online_ids = reid_model.predict(
                crops, pred_dets)
F
Feng Ni 已提交
420
            results[0].append(
421 422 423 424
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
            timer.toc()

            fps = 1. / timer.average_time
F
Feng Ni 已提交
425
            im = plot_tracking(
426 427 428 429 430 431 432
                frame,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps)

G
George Ni 已提交
433 434 435 436 437
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
G
George Ni 已提交
438
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
439 440
        else:
            writer.write(im)
441

G
George Ni 已提交
442
        frame_id += 1
443 444
        print('detect frame:%d' % (frame_id))

G
George Ni 已提交
445 446 447 448
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
449

G
George Ni 已提交
450 451 452 453
    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)
G
George Ni 已提交
454 455 456

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
457 458
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
G
George Ni 已提交
459 460 461 462
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
G
George Ni 已提交
463 464 465 466


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
467
    detector = SDE_Detector(
G
George Ni 已提交
468 469 470 471 472 473 474 475 476 477 478 479
        pred_config,
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig(FLAGS.reid_model_dir)
480
    reid_model = SDE_ReID(
G
George Ni 已提交
481 482 483 484
        pred_config,
        FLAGS.reid_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
485
        batch_size=FLAGS.reid_batch_size,
G
George Ni 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, reid_model, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, reid_model, img_list)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            reid_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')

            reid_model_dir = FLAGS.reid_model_dir
            reid_model_info = {
                'model_name': reid_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(reid_model, img_list, reid_model_info, name='ReID')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()