mot_sde_infer.py 20.6 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
import paddle
from benchmark_utils import PaddleInferBenchmark
22
from preprocess import preprocess
G
George Ni 已提交
23 24
from tracker import DeepSORTTracker
from ppdet.modeling.mot import visualization as mot_vis
25
from ppdet.modeling.mot.utils import MOTTimer
G
George Ni 已提交
26 27 28 29 30

from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
from infer import get_test_images, print_arguments, PredictConfig, Detector
31 32
from mot_jde_infer import write_mot_results
from infer import load_predictor
G
George Ni 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}


def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


def scale_coords(coords, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
    coords[:, 0:4] /= ratio
    coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
    return coords.round()


def clip_box(xyxy, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]
    xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=img0_shape[1])
    xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=img0_shape[0])
73 74 75 76 77
    w = xyxy[:, 2:3] - xyxy[:, 0:1]
    h = xyxy[:, 3:4] - xyxy[:, 1:2]
    mask = np.logical_and(h > 0, w > 0)
    keep_idx = np.nonzero(mask)
    return xyxy[keep_idx[0]], keep_idx
G
George Ni 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
        img = cv2.resize(img, (w, h))
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch


99
class SDE_Detector(Detector):
G
George Ni 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
120
                 batch_size=1,
G
George Ni 已提交
121 122 123 124 125 126
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
127 128 129
        super(SDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
G
George Ni 已提交
130
            device=device,
131 132
            run_mode=run_mode,
            batch_size=batch_size,
G
George Ni 已提交
133 134 135 136 137 138
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
139
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
G
George Ni 已提交
140

141 142
    def postprocess(self, boxes, input_shape, im_shape, scale_factor, threshold,
                    scaled):
143 144 145 146 147 148
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

149
        if not scaled:
150 151 152
            # scaled means whether the coords after detector outputs
            # have been scaled back to the original image, set True 
            # in general detector, set False in JDE YOLOv3.
153 154 155 156 157
            pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
                                       scale_factor)
        else:
            pred_bboxes = boxes[:, 2:]

158 159 160 161 162 163 164 165 166 167 168 169
        pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                        scale_factor)
        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

        return pred_dets[over_thres_idx], pred_xyxys[over_thres_idx]
G
George Ni 已提交
170

171
    def predict(self, image, scaled, threshold=0.5, warmup=0, repeats=1):
G
George Ni 已提交
172 173 174 175
        '''
        Args:
            image (np.ndarray): image numpy data
            threshold (float): threshold of predicted box' score
176 177
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
G
George Ni 已提交
178
        Returns:
179
            pred_dets (np.ndarray, [N, 6])
G
George Ni 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
205 206 207 208 209 210 211 212 213 214 215
        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape']
            scale_factor = inputs['scale_factor']

            pred_dets, pred_xyxys = self.postprocess(
                boxes, input_shape, im_shape, scale_factor, threshold, scaled)

G
George Ni 已提交
216 217
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
218
        return pred_dets, pred_xyxys
G
George Ni 已提交
219 220


221
class SDE_ReID(object):
G
George Ni 已提交
222 223 224 225 226
    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
227
                 batch_size=50,
G
George Ni 已提交
228 229 230 231 232 233 234 235 236 237
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
238
            batch_size=batch_size,
G
George Ni 已提交
239 240 241 242 243 244 245 246 247 248 249
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
250
        self.batch_size = batch_size
251
        assert pred_config.tracker, "Tracking model should have tracker"
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        pt = pred_config.tracker
        max_age = pt['max_age'] if 'max_age' in pt else 30
        max_iou_distance = pt[
            'max_iou_distance'] if 'max_iou_distance' in pt else 0.7
        self.tracker = DeepSORTTracker(
            max_age=max_age, max_iou_distance=max_iou_distance)

    def get_crops(self, xyxy, ori_img):
        w, h = self.tracker.input_size
        self.det_times.preprocess_time_s.start()
        crops = []
        xyxy = xyxy.astype(np.int64)
        ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
        for i, bbox in enumerate(xyxy):
            crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
            crops.append(crop)
        crops = preprocess_reid(crops, w, h)
        self.det_times.preprocess_time_s.end()

        return crops
G
George Ni 已提交
272 273

    def preprocess(self, crops):
274
        # to keep fast speed, only use topk crops
275
        crops = crops[:self.batch_size]
G
George Ni 已提交
276 277 278 279
        inputs = {}
        inputs['crops'] = np.array(crops).astype('float32')
        return inputs

280 281 282 283 284 285 286 287
    def postprocess(self, pred_dets, pred_embs):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)

        online_tlwhs, online_scores, online_ids = [], [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
G
George Ni 已提交
288
                continue
289 290 291 292 293 294 295 296 297 298 299
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
            if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

G
George Ni 已提交
300 301
        return online_tlwhs, online_scores, online_ids

302
    def predict(self, crops, pred_dets, warmup=0, repeats=1):
G
George Ni 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(crops)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
316
            pred_embs = feature_tensor.copy_to_cpu()
G
George Ni 已提交
317 318 319 320 321 322

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
323
            pred_embs = feature_tensor.copy_to_cpu()
G
George Ni 已提交
324 325 326
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
327 328
        online_tlwhs, online_scores, online_ids = self.postprocess(pred_dets,
                                                                   pred_embs)
G
George Ni 已提交
329 330 331
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1

332
        return online_tlwhs, online_scores, online_ids
333

G
George Ni 已提交
334 335

def predict_image(detector, reid_model, image_list):
G
George Ni 已提交
336
    image_list.sort()
G
George Ni 已提交
337 338 339
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
340
            pred_dets, pred_xyxys = detector.predict(
341
                [frame], FLAGS.scaled, FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
342 343 344 345 346 347
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
348 349
            pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                     FLAGS.threshold)
G
George Ni 已提交
350

351 352 353 354
        if len(pred_dets) == 1 and sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(i))
            online_im = frame
G
George Ni 已提交
355
        else:
356 357 358 359 360 361 362 363 364 365 366
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            if FLAGS.run_benchmark:
                online_tlwhs, online_scores, online_ids = reid_model.predict(
                    crops, pred_dets, warmup=10, repeats=10)
            else:
                online_tlwhs, online_scores, online_ids = reid_model.predict(
                    crops, pred_dets)
                online_im = mot_vis.plot_tracking(
                    frame, online_tlwhs, online_ids, online_scores, frame_id=i)
G
George Ni 已提交
367

368 369 370 371 372 373 374
        if FLAGS.save_images:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(FLAGS.output_dir, img_name)
            cv2.imwrite(out_path, online_im)
            print("save result to: " + out_path)
G
George Ni 已提交
375 376 377 378 379 380 381 382 383


def predict_video(detector, reid_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
384
    # Get Video info : resolution, fps, frame count
G
George Ni 已提交
385 386
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
387 388 389 390
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

G
George Ni 已提交
391 392 393
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
394
    if not FLAGS.save_images:
395
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
G
George Ni 已提交
396
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
G
George Ni 已提交
397 398 399 400 401 402 403 404
    frame_id = 0
    timer = MOTTimer()
    results = []
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                 FLAGS.threshold)

        if len(pred_dets) == 1 and sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            timer.toc()
            im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)
            online_tlwhs, online_scores, online_ids = reid_model.predict(
                crops, pred_dets)
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
            timer.toc()

            fps = 1. / timer.average_time
            im = mot_vis.plot_tracking(
                frame,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps)

G
George Ni 已提交
431 432 433 434 435
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
G
George Ni 已提交
436
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
437 438
        else:
            writer.write(im)
439 440 441 442 443 444 445 446 447 448

        if FLAGS.save_mot_txt_per_img:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            result_filename = os.path.join(save_dir,
                                           '{:05d}.txt'.format(frame_id))
            # First few frames, the model may have no tracking results but have
            # detection results,use the detection results instead, and set id -1.
            if results[-1][2] == []:
449 450 451 452
                tlwhs = [tlwh for tlwh in pred_dets[:, :4]]
                scores = [score[0] for score in pred_dets[:, 4:5]]
                ids = [-1] * len(tlwhs)
                result = (frame_id + 1, tlwhs, scores, ids)
453 454 455 456
            else:
                result = results[-1]
            write_mot_results(result_filename, [result])

G
George Ni 已提交
457
        frame_id += 1
458 459
        print('detect frame:%d' % (frame_id))

G
George Ni 已提交
460 461 462 463
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
464

G
George Ni 已提交
465 466 467 468
    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)
G
George Ni 已提交
469 470 471

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
472 473
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
G
George Ni 已提交
474 475 476 477
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
G
George Ni 已提交
478 479 480 481


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
482
    detector = SDE_Detector(
G
George Ni 已提交
483 484 485 486 487 488 489 490 491 492 493 494
        pred_config,
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig(FLAGS.reid_model_dir)
495
    reid_model = SDE_ReID(
G
George Ni 已提交
496 497 498 499
        pred_config,
        FLAGS.reid_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
500
        batch_size=FLAGS.reid_batch_size,
G
George Ni 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, reid_model, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, reid_model, img_list)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            reid_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')

            reid_model_dir = FLAGS.reid_model_dir
            reid_model_info = {
                'model_name': reid_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(reid_model, img_list, reid_model_info, name='ReID')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()