post_process.py 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
C
cnn 已提交
20
from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly, rbox2poly
F
FlyingQianMM 已提交
21
from ppdet.modeling.layers import TTFBox
W
wangguanzhong 已提交
22 23 24 25
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
26

27 28 29 30 31 32
__all__ = [
    'BBoxPostProcess',
    'MaskPostProcess',
    'FCOSPostProcess',
    'S2ANetBBoxPostProcess',
    'JDEBBoxPostProcess',
F
FlyingQianMM 已提交
33
    'CenterNetPostProcess',
34
]
F
Feng Ni 已提交
35

Q
qingqing01 已提交
36 37 38

@register
class BBoxPostProcess(object):
39
    __shared__ = ['num_classes']
Q
qingqing01 已提交
40 41
    __inject__ = ['decode', 'nms']

42
    def __init__(self, num_classes=80, decode=None, nms=None):
Q
qingqing01 已提交
43
        super(BBoxPostProcess, self).__init__()
44
        self.num_classes = num_classes
Q
qingqing01 已提交
45 46 47
        self.decode = decode
        self.nms = nms

48 49 50 51
    def __call__(self, head_out, rois, im_shape, scale_factor):
        """
        Decode the bbox and do NMS if needed. 

F
Feng Ni 已提交
52 53 54 55 56
        Args:
            head_out (tuple): bbox_pred and cls_prob of bbox_head output.
            rois (tuple): roi and rois_num of rpn_head output.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
57
        Returns:
F
Feng Ni 已提交
58 59 60 61 62
            bbox_pred (Tensor): The output prediction with shape [N, 6], including
                labels, scores and bboxes. The size of bboxes are corresponding
                to the input image, the bboxes may be used in other branch.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
63
        """
F
Feng Ni 已提交
64 65
        if self.nms is not None:
            bboxes, score = self.decode(head_out, rois, im_shape, scale_factor)
66
            bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes)
F
Feng Ni 已提交
67 68 69
        else:
            bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
                                              scale_factor)
Q
qingqing01 已提交
70 71
        return bbox_pred, bbox_num

72 73 74
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
        """
        Rescale, clip and filter the bbox from the output of NMS to 
F
Feng Ni 已提交
75 76 77 78
        get final prediction. 
        
        Notes:
        Currently only support bs = 1.
79 80

        Args:
F
Feng Ni 已提交
81 82 83 84 85 86
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            im_shape (Tensor): The shape of the input image.
            scale_factor (Tensor): The scale factor of the input image.
87
        Returns:
F
Feng Ni 已提交
88 89
            pred_result (Tensor): The final prediction results with shape [N, 6]
                including labels, scores and bboxes.
90
        """
W
wangguanzhong 已提交
91 92

        if bboxes.shape[0] == 0:
W
wangguanzhong 已提交
93
            bboxes = paddle.to_tensor(
W
wangguanzhong 已提交
94 95 96 97
                np.array(
                    [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
            bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))

98 99 100 101 102 103 104 105
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
G
Guanghua Yu 已提交
106
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
            expand_scale = paddle.expand(scale, [bbox_num[i], 4])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        self.origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 6], label, score, bbox
        pred_label = bboxes[:, 0:1]
        pred_score = bboxes[:, 1:2]
        pred_bbox = bboxes[:, 2:]
        # rescale bbox to original image
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = self.origin_shape_list[:, 0]
        origin_w = self.origin_shape_list[:, 1]
        zeros = paddle.zeros_like(origin_h)
        # clip bbox to [0, original_size]
        x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
        pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
        # filter empty bbox
        keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
        keep_mask = paddle.unsqueeze(keep_mask, [1])
        pred_label = paddle.where(keep_mask, pred_label,
                                  paddle.ones_like(pred_label) * -1)
        pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
        return pred_result

    def get_origin_shape(self, ):
        return self.origin_shape_list

Q
qingqing01 已提交
141 142 143

@register
class MaskPostProcess(object):
144
    def __init__(self, binary_thresh=0.5):
Q
qingqing01 已提交
145 146 147
        super(MaskPostProcess, self).__init__()
        self.binary_thresh = binary_thresh

148
    def paste_mask(self, masks, boxes, im_h, im_w):
F
Feng Ni 已提交
149 150 151
        """
        Paste the mask prediction to the original image.
        """
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1)
        masks = paddle.unsqueeze(masks, [0, 1])
        img_y = paddle.arange(0, im_h, dtype='float32') + 0.5
        img_x = paddle.arange(0, im_w, dtype='float32') + 0.5
        img_y = (img_y - y0) / (y1 - y0) * 2 - 1
        img_x = (img_x - x0) / (x1 - x0) * 2 - 1
        img_x = paddle.unsqueeze(img_x, [1])
        img_y = paddle.unsqueeze(img_y, [2])
        N = boxes.shape[0]

        gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]])
        gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]])
        grid = paddle.stack([gx, gy], axis=3)
        img_masks = F.grid_sample(masks, grid, align_corners=False)
        return img_masks[:, 0]

    def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
        """
F
Feng Ni 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
        Decode the mask_out and paste the mask to the origin image.

        Args:
            mask_out (Tensor): mask_head output with shape [N, 28, 28].
            bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode
                and NMS, including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction boxes of each batch with
                shape [1], and is N.
            origin_shape (Tensor): The origin shape of the input image, the tensor
                shape is [N, 2], and each row is [h, w].
        Returns:
            pred_result (Tensor): The final prediction mask results with shape
                [N, h, w] in binary mask style.
183 184
        """
        num_mask = mask_out.shape[0]
G
Guanghua Yu 已提交
185 186
        origin_shape = paddle.cast(origin_shape, 'int32')
        # TODO: support bs > 1 and mask output dtype is bool
187
        pred_result = paddle.zeros(
G
Guanghua Yu 已提交
188
            [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32')
189
        if bbox_num == 1 and bboxes[0][0] == -1:
G
Guanghua Yu 已提交
190 191
            return pred_result

192
        # TODO: optimize chunk paste
G
Guanghua Yu 已提交
193
        pred_result = []
194
        for i in range(bboxes.shape[0]):
G
Guanghua Yu 已提交
195
            im_h, im_w = origin_shape[i][0], origin_shape[i][1]
196 197 198
            pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h,
                                        im_w)
            pred_mask = pred_mask >= self.binary_thresh
G
Guanghua Yu 已提交
199 200 201
            pred_mask = paddle.cast(pred_mask, 'int32')
            pred_result.append(pred_mask)
        pred_result = paddle.concat(pred_result)
202
        return pred_result
F
Feng Ni 已提交
203 204 205 206 207 208 209 210 211 212 213 214


@register
class FCOSPostProcess(object):
    __inject__ = ['decode', 'nms']

    def __init__(self, decode=None, nms=None):
        super(FCOSPostProcess, self).__init__()
        self.decode = decode
        self.nms = nms

    def __call__(self, fcos_head_outs, scale_factor):
F
Feng Ni 已提交
215 216 217
        """
        Decode the bbox and do NMS in FCOS.
        """
F
Feng Ni 已提交
218 219 220 221 222
        locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
        bboxes, score = self.decode(locations, cls_logits, bboxes_reg,
                                    centerness, scale_factor)
        bbox_pred, bbox_num, _ = self.nms(bboxes, score)
        return bbox_pred, bbox_num
C
cnn 已提交
223 224 225


@register
C
cnn 已提交
226
class S2ANetBBoxPostProcess(nn.Layer):
227
    __shared__ = ['num_classes']
C
cnn 已提交
228 229
    __inject__ = ['nms']

230
    def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None):
C
cnn 已提交
231
        super(S2ANetBBoxPostProcess, self).__init__()
232
        self.num_classes = num_classes
C
cnn 已提交
233 234 235 236
        self.nms_pre = nms_pre
        self.min_bbox_size = min_bbox_size
        self.nms = nms
        self.origin_shape_list = []
C
cnn 已提交
237 238 239 240 241
        self.fake_pred_cls_score_bbox = paddle.to_tensor(
            np.array(
                [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
                dtype='float32'))
        self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
C
cnn 已提交
242

C
cnn 已提交
243
    def forward(self, pred_scores, pred_bboxes):
C
cnn 已提交
244 245 246 247 248 249
        """
        pred_scores : [N, M]  score
        pred_bboxes : [N, 5]  xc, yc, w, h, a
        im_shape : [N, 2]  im_shape
        scale_factor : [N, 2]  scale_factor
        """
C
cnn 已提交
250 251
        pred_ploys0 = rbox2poly(pred_bboxes)
        pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0)
C
cnn 已提交
252 253

        # pred_scores [NA, 16] --> [16, NA]
C
cnn 已提交
254 255
        pred_scores0 = paddle.transpose(pred_scores, [1, 0])
        pred_scores = paddle.unsqueeze(pred_scores0, axis=0)
C
cnn 已提交
256

257 258 259 260
        pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores,
                                                    self.num_classes)
        # Prevent empty bbox_pred from decode or NMS.
        # Bboxes and score before NMS may be empty due to the score threshold.
C
cnn 已提交
261 262 263 264 265 266
        if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[
                1] <= 1:
            pred_cls_score_bbox = self.fake_pred_cls_score_bbox
            bbox_num = self.fake_bbox_num

        pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10])
267
        return pred_cls_score_bbox, bbox_num
C
cnn 已提交
268

269
    def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
C
cnn 已提交
270 271 272 273
        """
        Rescale, clip and filter the bbox from the output of NMS to
        get final prediction.
        Args:
274
            bboxes(Tensor): bboxes [N, 10]
C
cnn 已提交
275 276 277 278 279 280 281 282 283 284
            bbox_num(Tensor): bbox_num
            im_shape(Tensor): [1 2]
            scale_factor(Tensor): [1 2]
        Returns:
            bbox_pred(Tensor): The output is the prediction with shape [N, 8]
                               including labels, scores and bboxes. The size of
                               bboxes are corresponding to the original image.
        """
        origin_shape = paddle.floor(im_shape / scale_factor + 0.5)

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        origin_shape_list = []
        scale_factor_list = []
        # scale_factor: scale_y, scale_x
        for i in range(bbox_num.shape[0]):
            expand_shape = paddle.expand(origin_shape[i:i + 1, :],
                                         [bbox_num[i], 2])
            scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
            scale = paddle.concat([
                scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
                scale_y
            ])
            expand_scale = paddle.expand(scale, [bbox_num[i], 8])
            origin_shape_list.append(expand_shape)
            scale_factor_list.append(expand_scale)

        origin_shape_list = paddle.concat(origin_shape_list)
        scale_factor_list = paddle.concat(scale_factor_list)

        # bboxes: [N, 10], label, score, bbox
        pred_label_score = bboxes[:, 0:2]
C
cnn 已提交
305
        pred_bbox = bboxes[:, 2:]
306 307

        # rescale bbox to original image
C
cnn 已提交
308
        pred_bbox = pred_bbox.reshape([-1, 8])
309 310 311
        scaled_bbox = pred_bbox / scale_factor_list
        origin_h = origin_shape_list[:, 0]
        origin_w = origin_shape_list[:, 1]
C
cnn 已提交
312

313
        bboxes = scaled_bbox
C
cnn 已提交
314
        zeros = paddle.zeros_like(origin_h)
C
cnn 已提交
315 316 317 318 319 320 321 322
        x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
        y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
        x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
        y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
        x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
        y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
        x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
        y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
323 324 325
        pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
        pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
        return pred_result
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355


@register
class JDEBBoxPostProcess(BBoxPostProcess):
    def __call__(self, head_out, anchors):
        """
        Decode the bbox and do NMS for JDE model. 

        Args:
            head_out (list): Bbox_pred and cls_prob of bbox_head output.
            anchors (list): Anchors of JDE model.

        Returns:
            boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. 
            bbox_pred (Tensor): The output is the prediction with shape [N, 6]
                including labels, scores and bboxes.
            bbox_num (Tensor): The number of prediction of each batch with shape [N].
            nms_keep_idx (Tensor): The index of kept bboxes after NMS. 
        """
        boxes_idx, bboxes, score = self.decode(head_out, anchors)
        bbox_pred, bbox_num, nms_keep_idx = self.nms(bboxes, score,
                                                     self.num_classes)
        if bbox_pred.shape[0] == 0:
            bbox_pred = paddle.to_tensor(
                np.array(
                    [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
            bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
            nms_keep_idx = paddle.to_tensor(np.array([[0]], dtype='int32'))

        return boxes_idx, bbox_pred, bbox_num, nms_keep_idx
F
FlyingQianMM 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447


@register
class CenterNetPostProcess(TTFBox):
    """
    Postprocess the model outputs to get final prediction:
        1. Do NMS for heatmap to get top `max_per_img` bboxes.
        2. Decode bboxes using center offset and box size.
        3. Rescale decoded bboxes reference to the origin image shape.

    Args:
        max_per_img(int): the maximum number of predicted objects in a image,
            500 by default.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        regress_ltrb (bool): whether to regress left/top/right/bottom or
            width/height for a box, true by default.
        for_mot (bool): whether return other features used in tracking model.

    """

    __shared__ = ['down_ratio']

    def __init__(self,
                 max_per_img=500,
                 down_ratio=4,
                 regress_ltrb=True,
                 for_mot=False):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.down_ratio = down_ratio
        self.regress_ltrb = regress_ltrb
        self.for_mot = for_mot

    def __call__(self, hm, wh, reg, im_shape, scale_factor):
        heat = self._simple_nms(hm)
        scores, inds, clses, ys, xs = self._topk(heat)
        scores = paddle.tensor.unsqueeze(scores, [1])
        clses = paddle.tensor.unsqueeze(clses, [1])

        reg_t = paddle.transpose(reg, [0, 2, 3, 1])
        # Like TTFBox, batch size is 1.
        # TODO: support batch size > 1
        reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]])
        reg = paddle.gather(reg, inds)
        xs = paddle.cast(xs, 'float32')
        ys = paddle.cast(ys, 'float32')
        xs = xs + reg[:, 0:1]
        ys = ys + reg[:, 1:2]

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
        wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
        wh = paddle.gather(wh, inds)

        if self.regress_ltrb:
            x1 = xs - wh[:, 0:1]
            y1 = ys - wh[:, 1:2]
            x2 = xs + wh[:, 2:3]
            y2 = ys + wh[:, 3:4]
        else:
            x1 = xs - wh[:, 0:1] / 2
            y1 = ys - wh[:, 1:2] / 2
            x2 = xs + wh[:, 0:1] / 2
            y2 = ys + wh[:, 1:2] / 2

        n, c, feat_h, feat_w = paddle.shape(hm)
        padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2
        padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2
        x1 = x1 * self.down_ratio
        y1 = y1 * self.down_ratio
        x2 = x2 * self.down_ratio
        y2 = y2 * self.down_ratio

        x1 = x1 - padw
        y1 = y1 - padh
        x2 = x2 - padw
        y2 = y2 - padh

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
        boxes_shape = paddle.shape(bboxes)
        boxes_shape.stop_gradient = True
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
        if self.for_mot:
            results = paddle.concat([bboxes, scores, clses], axis=1)
            return results, inds
        else:
            results = paddle.concat([clses, scores, bboxes], axis=1)
            return results, paddle.shape(results)[0:1]