distribute_transpiler.py 17.5 KB
Newer Older
T
typhoonzero 已提交
1
from __future__ import print_function
T
done  
typhoonzero 已提交
2 3 4 5
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
6
from distributed_spliter import *
T
typhoonzero 已提交
7
import math
T
done  
typhoonzero 已提交
8 9


T
typhoonzero 已提交
10 11 12 13 14 15
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
16

T
typhoonzero 已提交
17 18
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
19 20


T
typhoonzero 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
        We may need to split dense tensor to one or several blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
        
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        mininum block size is 1024. The max block size is used to prevent
        too large block that may causing send error.
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
        # update split_count after align
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.
            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
87
        assert (callable(split_method))
T
done  
typhoonzero 已提交
88 89
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
90
        self.program = program
T
done  
typhoonzero 已提交
91
        self.trainers = trainers
T
typhoonzero 已提交
92
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
93 94 95 96 97 98
        # steps to transpile:
        # 1. split variable to multiple blocks, align by product(dim[1:]) (width).
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
        # 5. create new program as parameter server.
T
typhoonzero 已提交
99
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
100

T
typhoonzero 已提交
101
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
102 103

        # step1
T
typhoonzero 已提交
104 105
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
106
        # TODO: add split selected rows support
T
typhoonzero 已提交
107 108
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
109
        # step2
T
typhoonzero 已提交
110
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
111 112 113

        # step3
        send_inputs = []
T
typhoonzero 已提交
114
        send_outputs = []
T
typhoonzero 已提交
115 116 117 118
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
119 120
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
121 122 123
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
T
typhoonzero 已提交
124 125 126
        # let send_op know which endpoint to send which var, eplist is of the same
        # order of send_inputs.
        eplist = split_method(send_inputs, pserver_endpoints)
T
typhoonzero 已提交
127
        # create mapping of endpoint -> splited var to create pserver side program
T
typhoonzero 已提交
128 129 130 131 132 133 134 135
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
136 137 138 139 140 141

        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
142 143 144
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
145 146
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
147 148 149
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
150
                inputs={"X": splited_var},
T
typhoonzero 已提交
151 152
                outputs={"Out": orig_param},
                attrs={"axis": 0})
T
typhoonzero 已提交
153 154 155

    def _create_vars_from_blocklist(self, program, block_list):
        block_map = dict()
T
typhoonzero 已提交
156
        var_mapping = dict()
T
typhoonzero 已提交
157 158 159 160 161 162 163
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
164 165 166 167
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
168 169 170 171
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
172

T
typhoonzero 已提交
173
            for i, block in enumerate(splited):
T
typhoonzero 已提交
174
                size = block[1]
T
typhoonzero 已提交
175 176 177 178
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
179 180 181 182
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
183
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
184
                var_mapping[varname].append(var)
T
typhoonzero 已提交
185
        return var_mapping
T
done  
typhoonzero 已提交
186 187 188 189 190 191 192 193 194

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
T
typhoonzero 已提交
195 196 197
            # HACK: let all param in pserver persistable so child
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
198

T
typhoonzero 已提交
199 200 201
    def _append_split_op(self, program, gradblocks):
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
202 203
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
204
                continue
T
typhoonzero 已提交
205
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
206 207 208
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
T
typhoonzero 已提交
209 210 211
            program.global_block().append_op(
                type="split",
                inputs={"X": orig_var},
T
typhoonzero 已提交
212 213
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
T
typhoonzero 已提交
214
            )
T
typhoonzero 已提交
215
        return var_mapping
T
done  
typhoonzero 已提交
216

T
typhoonzero 已提交
217
    def get_trainer_program(self):
T
typhoonzero 已提交
218
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
219 220
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
221

T
done  
typhoonzero 已提交
222 223 224 225 226 227 228 229 230 231 232
    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
        Param and Grad is splited to multiple servers.
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

    def _append_pserver_ops(self, program, opt_op, endpoint):
T
typhoonzero 已提交
261
        new_inputs = dict()
T
typhoonzero 已提交
262 263
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
264 265 266 267 268 269 270 271 272 273 274
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
                    if g.name.startswith(var.name):
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
275
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
276 277 278 279 280 281
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
282
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
283 284
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
285 286 287
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
288
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
289 290 291 292
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
293 294 295 296 297 298 299 300 301 302
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
                    if p.name.startswith(var.name):
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
303
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
304
                    name=param_block.name,
T
typhoonzero 已提交
305
                    persistable=True,
T
typhoonzero 已提交
306 307
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
308

T
typhoonzero 已提交
309
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
324

T
typhoonzero 已提交
325 326
        # change outputs ParamOut variable
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
327
        program.global_block().append_op(
T
typhoonzero 已提交
328 329 330 331 332
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
333
    def _append_pserver_non_opt_ops(self, program, opt_op):
T
typhoonzero 已提交
334
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
335
            program.global_block().create_var(
T
typhoonzero 已提交
336 337 338 339
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
340
        program.global_block().append_op(
T
typhoonzero 已提交
341
            type=opt_op.type,
T
typhoonzero 已提交
342
            inputs=opt_op.inputs,
T
typhoonzero 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

    def get_pserver_program(self, endpoint, optimize_ops):
        """
        get pserver side program by endpoint

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
358
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
359 360 361
        # step6
        optimize_sub_program = Program()
        for opt_op in optimize_ops:
T
typhoonzero 已提交
362
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
363
                # append optimize_op
T
typhoonzero 已提交
364
                self._append_pserver_ops(optimize_sub_program, opt_op, endpoint)
T
typhoonzero 已提交
365
            else:
T
typhoonzero 已提交
366
                self._append_pserver_non_opt_ops(optimize_sub_program, opt_op)
T
typhoonzero 已提交
367

T
typhoonzero 已提交
368
        print("####", optimize_sub_program)
T
done  
typhoonzero 已提交
369 370
        pserver_program.global_block().append_op(
            type="recv",
T
typhoonzero 已提交
371 372
            inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"]
                    },  # grads to recv
T
done  
typhoonzero 已提交
373 374 375 376
            outputs={},
            attrs={
                "OptimizeProgram": optimize_sub_program.desc,
                "endpoint": endpoint,
T
typhoonzero 已提交
377 378 379 380 381 382 383 384
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
done  
typhoonzero 已提交
385 386 387 388
                "Trainers": self.trainers
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    def get_startup_program(self, endpoint):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        was splited to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if pname.startswith(varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars
        created_var_map = dict()
        for var in params:
            print("%%%% append var", var.name, var.shape)
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
                persistable=True,
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
            for key, var in op.outputs.iteritems():
                newname, _ = _get_splited_name_and_shape(var.name)
                if newname:
                    new_outputs[key] = created_var_map[newname]
                else:
                    new_outputs[key] = var
            # do not append startup op if var is not on this pserver
            var_on_pserver = False
            for _, var in new_outputs.iteritems():
                if var.name in created_var_map:
                    var_on_pserver = True
            if var_on_pserver:
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=op.inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog