framework.py 75.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21
import sys
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41 42 43
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
44
    'name_scope',
45
]
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

53 54 55 56 57 58 59 60 61 62
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
103

104 105 106 107
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
108 109
          with name_scope("attention"):
             ...
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
129 130 131
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
132 133 134 135


def grad_var_name(var_name):
    """
136 137
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
138 139 140
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
141

142
def convert_np_dtype_to_dtype_(np_dtype):
143 144
    """
    Convert the data type in numpy to the data type in Paddle
145

146
    Args:
147
        np_dtype(np.dtype): the data type in numpy.
148

149 150
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
151 152

    """
153 154
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
155
        return core.VarDesc.VarType.FP32
156
    elif dtype == np.float64:
157
        return core.VarDesc.VarType.FP64
158
    elif dtype == np.float16:
159
        return core.VarDesc.VarType.FP16
160
    elif dtype == np.int32:
161
        return core.VarDesc.VarType.INT32
162
    elif dtype == np.int16:
163
        return core.VarDesc.VarType.INT16
164
    elif dtype == np.int64:
165
        return core.VarDesc.VarType.INT64
166
    elif dtype == np.bool:
167
        return core.VarDesc.VarType.BOOL
168 169
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
170 171
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
172 173
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
174
    else:
M
minqiyang 已提交
175
        raise ValueError("Not supported numpy dtype %s" % dtype)
176 177 178


def dtype_is_floating(dtype):
179 180 181
    """
    Check the data type is floating or not.
    Args:
182
        dtype(np.dtype|core.VarDesc.VarType): data type.
183 184 185 186 187
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
188
    if not isinstance(dtype, core.VarDesc.VarType):
189 190
        dtype = convert_np_dtype_to_dtype_(dtype)

191 192 193 194
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
195 196


Y
Yang Yang(Tony) 已提交
197
def _debug_string_(proto, throw_on_error=True):
198 199 200 201 202 203 204 205 206 207 208
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
209
    error_fields = list()
Y
Yang Yang(Tony) 已提交
210
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
211 212
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
213 214 215
    return proto.__str__()


X
Xin Pan 已提交
216
class Variable(object):
217
    """
218 219 220
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
221
    two variables in different blocks could have the same name.
222

223 224
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
225

226
    Most of a Variable's member variables can be setted to be None. It mean
227
    it is not available or will be specified later.
228 229

    Args:
230
        block(Block): The block that the variable belongs to.
231 232
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
233 234
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
235
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
236
            Some kinds of variable do not contain shape, just set it to None.
237 238 239
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
240
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
241
            series data.
242
            Default: None
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
265 266
    """

Y
Yu Yang 已提交
267 268
    def __init__(self,
                 block,
Y
Yu Yang 已提交
269
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
270 271 272 273
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
274
                 capacity=None,
Q
QI JUN 已提交
275
                 persistable=None,
F
fengjiayi 已提交
276
                 error_clip=None,
Y
Yu Yang 已提交
277
                 stop_gradient=False,
F
fengjiayi 已提交
278
                 is_data=False,
Y
Yu Yang 已提交
279
                 **kwargs):
Y
Yu Yang 已提交
280
        self.block = block
F
fengjiayi 已提交
281
        self.error_clip = error_clip
Y
Yu Yang 已提交
282 283

        if name is None:
Y
Yu Yang 已提交
284
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
285
        is_new_var = False
M
minqiyang 已提交
286
        name = cpt.to_text(name)
M
minqiyang 已提交
287
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
288 289

        if self.desc is None:
M
minqiyang 已提交
290
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
291
            is_new_var = True
Y
Yu Yang 已提交
292

Y
Yu Yang 已提交
293 294 295 296 297 298 299 300
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
301
        if shape is not None:
Y
Yu Yang 已提交
302
            if is_new_var:
303
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
312
        if dtype is not None:
313
            if not isinstance(dtype, core.VarDesc.VarType):
314
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
315
            if is_new_var:
F
fengjiayi 已提交
316
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
317
            else:
F
fengjiayi 已提交
318
                old_dtype = self.dtype
Q
QI JUN 已提交
319
                if dtype != old_dtype:
Y
Yu Yang 已提交
320 321 322 323 324
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
325 326

        if lod_level is not None:
Y
Yu Yang 已提交
327
            if is_new_var:
328
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
329 330 331 332 333 334 335
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
336 337 338 339 340 341 342 343 344 345 346
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

347 348 349 350 351 352 353 354
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
355
        self.block.vars[name] = self
Y
Yu Yang 已提交
356
        self.op = None
F
fengjiayi 已提交
357
        self.is_data = is_data
X
Xin Pan 已提交
358 359 360
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
361
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
362

363
    def _numpy(self):
M
minqiyang 已提交
364
        scope = _imperative_tracer().get_scope()
365 366 367 368
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

    def _backward(self):
369
        scope = _imperative_tracer().get_scope()
X
Xin Pan 已提交
370
        self._ivar._run_backward(scope)
371 372

    def _gradient(self):
X
Xin Pan 已提交
373
        return np.array(self._ivar._grad())
374

375
    def __str__(self):
Y
Yang Yang(Tony) 已提交
376 377
        return self.to_string(True)

F
update  
fengjiayi 已提交
378
    def to_string(self, throw_on_error, with_details=False):
379 380 381 382
        """
        Get debug string.

        Args:
383 384
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
385
            with_details(bool): more details about variables and parameters
386 387
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
388

389 390
        Returns:
            str: The debug string.
391
        """
F
update  
fengjiayi 已提交
392 393
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
394
        protostr = self.desc.serialize_to_string()
395
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
396 397 398 399
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
400 401
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
402
        return res_str
403 404 405

    __repr__ = __str__

W
Wu Yi 已提交
406
    def _set_desc(self, input):
407 408 409 410 411 412 413 414 415
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
416 417
        self.desc = input

418 419 420 421 422 423 424 425
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

426 427 428 429
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
430 431 432 433
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
434 435
    @property
    def name(self):
M
minqiyang 已提交
436
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
437

T
typhoonzero 已提交
438 439 440 441
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
442 443 444
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
445
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
446 447

    @property
F
fengjiayi 已提交
448 449
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
450 451 452

    @property
    def lod_level(self):
453
        return self.desc.lod_level()
Y
Yu Yang 已提交
454

Y
Yu Yang 已提交
455 456 457 458
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
459
    def _set_error_clip(self, error_clip):
460 461 462 463 464 465 466 467 468
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
469 470
        self.error_clip = error_clip

Y
Yu Yang 已提交
471

F
fengjiayi 已提交
472 473 474
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
475

476 477
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
478 479 480 481
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
482
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
483 484 485 486 487
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
488 489 490 491
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
492 493 494 495 496 497 498 499 500
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
501
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
502 503 504 505 506 507
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
508 509 510 511 512 513 514 515
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
516 517
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
518 519
        return self.op_proto_map[type]

520 521 522 523
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
524
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
525
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
526 527
        }

F
fengjiayi 已提交
528

X
Xin Pan 已提交
529
class Operator(object):
530
    """
531 532 533 534 535 536 537
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
538
        type(str): The type of operator. Default None.
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
559
        Block.append_op or Block._prepend_op instead.
560 561 562 563 564 565 566 567 568 569

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
570
    """
571 572 573 574
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
575
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
576
    }
577

Y
Yu Yang 已提交
578 579
    def __init__(self,
                 block,
Y
Yu Yang 已提交
580
                 desc,
Y
Yu Yang 已提交
581 582 583
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
584 585
                 attrs=None,
                 stop_gradient=False):
Y
Yu Yang 已提交
586
        self.block = block
Y
Yu Yang 已提交
587
        self.desc = desc
G
gongweibao 已提交
588 589 590 591 592
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
593 594 595 596
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
597 598
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
599 600 601

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
602 603
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
604

G
gongweibao 已提交
605 606
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
607

F
fengjiayi 已提交
608 609 610 611 612
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
613
        self.desc.set_type(type)
F
fengjiayi 已提交
614
        proto = OpProtoHolder.instance().get_op_proto(type)
615

616 617 618
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
619 620
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
621
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
622 623
                    return True
            return False
Q
QI JUN 已提交
624

Y
Yang Yang(Tony) 已提交
625 626 627 628 629 630 631
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
632 633 634 635
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
636 637
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
638 639 640
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
641
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
642
                            in_arg_names.append(arg)
643 644
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
645
                        else:
M
minqiyang 已提交
646
                            in_arg_names.append(cpt.to_text(arg.name))
647
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
648 649
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
650

Y
Yu Yang 已提交
651
        if outputs is not None:
652 653 654 655 656 657 658
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
659 660
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
661 662 663
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
664

F
fengjiayi 已提交
665
            for out_proto in proto.outputs:
666 667 668 669
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
670 671
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
672 673 674
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
675
                    out_arg_names.append(cpt.to_text(arg.name))
676 677
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
678

G
gongweibao 已提交
679 680
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
681
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
682
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
683
                attr_name = attr.name
G
gongweibao 已提交
684
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
685
                    continue
G
gongweibao 已提交
686
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
687 688
                self._update_desc_attr(attr_name, attr_val)

689
        self.desc.check_attrs()
W
Wu Yi 已提交
690
        if self._has_kernel(type):
Q
QI JUN 已提交
691
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
692
            self.desc.infer_shape(self.block.desc)
X
Xin Pan 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
            self.inputs = []
            if inputs is not None:
                for inp in inputs.values():
                    if isinstance(inp, Variable):
                        self.inputs.append(inp)
                    elif isinstance(inp, list) or isinstance(inp, tuple):
                        self.inputs.extend(inp[:])
            self.outputs = []
            if outputs is not None:
                for out in outputs.values():
                    if isinstance(out, Variable):
                        self.outputs.append(out)
                    elif isinstance(out, list) or isinstance(out, tuple):
                        self.outputs.extend(out[:])
F
fengjiayi 已提交
710

W
Wu Yi 已提交
711
    def _has_kernel(self, op_type):
712 713
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
714
    def to_string(self, throw_on_error):
715
        """
716 717
        Get debug string.

718
        Args:
719 720
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
721

722 723
        Returns:
            str: The debug string.
724 725

        """
726
        protostr = self.desc.serialize_to_string()
727
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
728 729 730 731
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
732 733 734

    __repr__ = __str__

F
fengjiayi 已提交
735 736 737 738 739
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
740
        """
741
        Get the input arguments according to the input parameter name.
742

743 744
        Args:
            name(str): The input parameter name.
745

746 747 748
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
749
        """
F
fengjiayi 已提交
750 751
        return self.desc.input(name)

W
Wu Yi 已提交
752
    def _rename_input(self, old_name, new_name):
753 754 755 756 757 758 759 760 761 762
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
763
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
764

W
Wu Yi 已提交
765
    def _rename_output(self, old_name, new_name):
766 767 768 769 770 771 772 773 774 775
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
776
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
777

F
fengjiayi 已提交
778 779 780 781
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
782 783 784 785 786 787 788 789
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
790
    def output(self, name):
791
        """
792
        Get output arguments by the output parameter name.
793

794 795
        Args:
            name(str): The output parameter name.
796

797 798 799
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
800
        """
F
fengjiayi 已提交
801 802 803 804 805 806
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

807 808 809 810 811 812 813 814
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
815
    def has_attr(self, name):
816
        """
817 818
        Whether this Operator has the attribute with name or not.

819
        Args:
820
            name(str): the attribute name.
821

822 823
        Returns:
            bool: True if has this attribute.
824 825

        """
F
fengjiayi 已提交
826 827 828
        return self.desc.has_attr(name)

    def attr_type(self, name):
829
        """
830
        Get the type of attribute by attribute's name.
831

832 833
        Args:
            name(str): the attribute name.
834

835 836
        Returns:
            core.AttrType: the attribute type.
837
        """
F
fengjiayi 已提交
838 839
        return self.desc.attr_type(name)

W
Wu Yi 已提交
840
    def _set_attr(self, name, val):
841 842 843 844 845 846 847 848 849 850
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
864 865
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
866 867
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
868
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
869 870 871 872
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
873
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
874

F
fengjiayi 已提交
875 876 877 878 879
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
880
        """
881 882
        Get the attribute by name.

883
        Args:
884
            name(str): the attribute name.
885

886 887
        Returns:
            bool|int|str|float|list: The attribute value. The return value
888 889
            can be any valid attribute type.
        """
F
fengjiayi 已提交
890
        return self.desc.attr(name)
Y
Yu Yang 已提交
891

W
Wu Yi 已提交
892
    def _block_attr_id(self, name):
893
        """
G
gongweibao 已提交
894
        Get the block attribute's id by name.
895

896 897
        Args:
            name(str): the attribute name.
898

899 900
        Returns:
            int: the block index.
901
        """
W
Wu Yi 已提交
902
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
903

W
Wu Yi 已提交
904
    def _block_attr(self, name):
G
gongweibao 已提交
905 906 907 908 909 910 911 912 913 914
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
915
        id = self._block_attr_id(name)
G
gongweibao 已提交
916 917 918
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
919
    def _blocks_attr(self, name):
G
gongweibao 已提交
920 921 922 923 924 925 926 927 928 929
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
930
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
931 932 933 934 935
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
936
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
937 938 939 940 941 942 943 944 945 946
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
947
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
948

J
JiayiFeng 已提交
949
    def all_attrs(self):
F
fengjiayi 已提交
950
        """
951 952 953
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
954
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
955 956 957 958
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
959 960
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
961
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
962 963 964
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
965
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
966 967 968 969
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
970 971
        return attr_map

Y
Yu Yang 已提交
972

Y
Yu Yang 已提交
973
class Block(object):
974 975 976 977 978 979 980 981 982 983 984 985 986 987
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
988
        use `Program._create_block()` to create a block.
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1003
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1004
        self.desc = program.desc.block(idx)
1005
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1006
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1007
        self.program = program
1008
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1009

1010
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1011 1012
        return self.to_string(True)

F
fengjiayi 已提交
1013 1014
    def to_string(self, throw_on_error, with_details=False):
        """
1015 1016
        Get debug string.

F
fengjiayi 已提交
1017 1018
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1019
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1020
            with_details(bool): more details about variables and parameters
1021 1022
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1023

1024 1025
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1026 1027 1028 1029
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1030
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1031 1032
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1033
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1034
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1035
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1036
            for op in self.ops:
F
fengjiayi 已提交
1037 1038
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1039 1040 1041
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1042 1043
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1044 1045
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1046 1047 1048

    __repr__ = __str__

Y
Yu Yang 已提交
1049 1050
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1051
        return self.desc.parent
Y
Yu Yang 已提交
1052

Y
Yu Yang 已提交
1053 1054 1055 1056
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1057
    def _set_forward_block_idx(self, idx):
1058 1059 1060 1061 1062 1063 1064 1065 1066
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1067
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1068

Y
Yu Yang 已提交
1069 1070
    @property
    def idx(self):
Y
Yu Yang 已提交
1071
        return self.desc.id
Y
Yu Yang 已提交
1072

Q
Qiao Longfei 已提交
1073
    def var(self, name):
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1087
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1088 1089 1090
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1091 1092
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1093
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1094
        return v
Q
Qiao Longfei 已提交
1095

X
Xin Pan 已提交
1096
    def _find_var_recursive(self, name):
1097 1098 1099 1100 1101 1102 1103
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1104
            Variable: the Variable with the giving name. Or None if not found.
1105
        """
Y
Yu Yang 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1130
        return None
Y
Yu Yang 已提交
1131

X
Xin Pan 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1151

Q
Qiao Longfei 已提交
1152
    def all_parameters(self):
1153
        return list(self.iter_parameters())
1154

1155
    def iter_parameters(self):
M
minqiyang 已提交
1156
        return (item[1] for item in six.iteritems(self.vars)
1157
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1158

Y
Yu Yang 已提交
1159
    def create_var(self, *args, **kwargs):
1160
        var = Variable(block=self, *args, **kwargs)
1161 1162
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1163
        return var
Y
Yu Yang 已提交
1164

Q
Qiao Longfei 已提交
1165 1166 1167
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1168
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1169 1170
        """
        Rename variable in vars and ops' inputs and outputs
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1183
        """
M
minqiyang 已提交
1184 1185
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1186

T
typhoonzero 已提交
1187
        if not self.has_var(name):
1188
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1189 1190
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1191
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1192 1193 1194 1195 1196 1197 1198
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1199
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1200 1201 1202 1203
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1204
        orig_var_type = v.type
M
minqiyang 已提交
1205
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1206
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1207
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1208
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1209 1210 1211 1212
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1213
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1214 1215 1216 1217 1218 1219 1220
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1221
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1222 1223
            var = Variable(
                self,
T
typhoonzero 已提交
1224
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1225 1226 1227 1228
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1229
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1230 1231 1232
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1233
        self._sync_with_cpp()
1234
        return var
T
typhoonzero 已提交
1235

W
Wu Yi 已提交
1236 1237
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1238
        self.desc._remove_var(cpt.to_bytes(name))
1239 1240
        del self.vars[name]

Y
Yu Yang 已提交
1241 1242
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1243
        param = Parameter(global_block, *args, **kwargs)
1244
        if 'initializer' in kwargs:
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1265
        return param
Y
Yu Yang 已提交
1266

Y
Yu Yang 已提交
1267
    def append_op(self, *args, **kwargs):
1268 1269 1270 1271 1272 1273
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1274
        op_desc = self.desc.append_op()
1275
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
M
minqiyang 已提交
1276 1277
        print("append_op", kwargs.get("type"), kwargs.get("stop_gradient",
                                                          False))
1278
        if _in_imperative_mode():
X
Xin Pan 已提交
1279
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
M
minqiyang 已提交
1280 1281
                                       [v._ivar for v in op.outputs], self.desc,
                                       kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1282 1283 1284
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1285
    def _insert_op(self, index, *args, **kwargs):
1286 1287 1288 1289 1290 1291 1292 1293 1294
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1295 1296
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1297 1298 1299 1300
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1301
    def _remove_op(self, index):
1302 1303 1304 1305 1306 1307 1308 1309 1310
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1311 1312
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1313 1314
        del self.ops[index]

W
Wu Yi 已提交
1315
    def _slice_ops(self, start, end):
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1326
        return self.ops[start:end]
Y
Yancey1989 已提交
1327

W
Wu Yi 已提交
1328 1329
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1330
        op = Operator(self, op_desc, *args, **kwargs)
M
minqiyang 已提交
1331 1332
        print("prepend_op", kwargs.get("type"), kwargs.get("stop_gradient",
                                                           False))
M
minqiyang 已提交
1333 1334
        if _in_imperative_mode():
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
M
minqiyang 已提交
1335 1336
                                       [v._ivar for v in op.outputs], self.desc,
                                       kwargs.get("stop_gradient", False))
Q
qiaolongfei 已提交
1337
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1338 1339
        return op

W
Wu Yi 已提交
1340
    def _sync_with_cpp(self):
1341
        """
1342 1343
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1344
        """
Q
Qiao Longfei 已提交
1345 1346 1347 1348 1349
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1350
        # sync variables removed from c++ end
1351
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1352
            if not self.desc.find_var(cpt.to_bytes(var)):
1353 1354
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1355
        # sync operators from cpp
1356 1357 1358 1359
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1376 1377 1378 1379 1380

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1381
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1382 1383 1384 1385 1386 1387 1388

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1402 1403 1404 1405
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1406
    def _copy_param_info_from(self, other):
1407
        """
1408 1409
        Copy the information of parameters from the other block.

1410
        Args:
1411 1412 1413 1414 1415
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1416 1417 1418 1419 1420

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1421 1422
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1423
        for p in other.iter_parameters():
1424 1425 1426
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1427
                raise ValueError("_copy_param_info_from should be invoked with "
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1440
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1441
                error_clip=p.error_clip,
1442 1443 1444
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1445
    def _clone_variable(self, var):
1446 1447
        """
        Clone a variable into current block.
1448

1449 1450 1451 1452
        Args:
            var: the variable to be cloned.

        Returns:
1453
            Variable: the new  variable cloned from 'var' in current block.
1454 1455
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1456 1457 1458 1459 1460
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1461 1462
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1463
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1464 1465 1466 1467 1468 1469
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1470 1471
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1472 1473 1474 1475 1476 1477 1478
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1479 1480
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1481
        return ret_var
1482

Y
Yu Yang 已提交
1483 1484

class Program(object):
D
dzhwinter 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1496
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1497 1498

    Returns:
Y
yuyang18 已提交
1499
        A empty program.
D
dzhwinter 已提交
1500 1501

    Examples:
Y
yuyang18 已提交
1502 1503 1504 1505 1506 1507
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1508 1509 1510

    """

1511 1512
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1513 1514
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1515
        self._seed = 0
Y
yuyang18 已提交
1516
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1517
        self._op_role_var = []
T
tangwei12 已提交
1518 1519 1520 1521

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1522
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1523
        self._endpoints = []
1524
        self._trainers_endpoints = []
T
tangwei12 已提交
1525
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1526 1527 1528

    @property
    def op_role(self):
Y
yuyang18 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1542 1543 1544 1545 1546 1547 1548 1549
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1550 1551 1552 1553 1554 1555 1556
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1557 1558 1559 1560
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1561
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1562 1563

    @contextlib.contextmanager
W
Wu Yi 已提交
1564
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1565 1566 1567 1568 1569 1570 1571
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1572
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1573 1574 1575 1576

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1577
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1578 1579
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1580 1581 1582
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1583 1584
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1585 1586 1587 1588
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1589
        yield
X
Xin Pan 已提交
1590 1591
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1592

1593
    @contextlib.contextmanager
X
Xin Pan 已提交
1594
    def _lr_schedule_guard(self, is_with_opt=False):
1595 1596 1597 1598 1599 1600 1601
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1602 1603 1604 1605
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1606 1607 1608 1609 1610 1611 1612

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1613 1614 1615 1616

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1617 1618
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1619 1620
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1621 1622 1623
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1624 1625
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1626

1627
    def __str__(self):
Y
yuyang18 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1637 1638
        return self.to_string(True)

F
fengjiayi 已提交
1639 1640 1641
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1642

F
fengjiayi 已提交
1643
        Args:
Y
yuyang18 已提交
1644 1645
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1646

Y
yuyang18 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1667 1668
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1669 1670
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1671

W
Wu Yi 已提交
1672
    def _get_desc(self):
Y
yuyang18 已提交
1673 1674 1675 1676 1677 1678 1679
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1680 1681
        return self.desc

X
version  
Xin Pan 已提交
1682 1683 1684
    def _version(self):
        return self.desc._version()

1685
    def clone(self, for_test=False):
Y
yuyang18 已提交
1686 1687 1688
        """
        Create a new, duplicated program.

1689

Y
yuyang18 已提交
1690 1691 1692 1693
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1694

Y
yuyang18 已提交
1695 1696 1697 1698
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1699 1700 1701 1702 1703
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1704 1705

        Args:
Y
yuyang18 已提交
1706 1707
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1708

D
dzhwinter 已提交
1709
        Returns:
Y
yuyang18 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1763 1764
        """
        if for_test:
X
Xin Pan 已提交
1765
            p = self._inference_optimize(prune_read_op=False)
1766
        else:
1767
            p = Program()
G
gongweibao 已提交
1768 1769
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1770
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1771 1772 1773
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1774 1775 1776 1777

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1778
            p._sync_with_cpp()
1779

W
Wu Yi 已提交
1780
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1781
        p._copy_data_info_from(self)
1782
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1783
        return p
1784

W
Wu Yi 已提交
1785
    def _prune(self, targets):
Y
yuyang18 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1801 1802 1803 1804 1805 1806
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1807 1808
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1809
                    # and we need to find the current op that generate this
1810 1811 1812 1813 1814 1815 1816 1817
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1818
                    t = t.op
1819 1820 1821 1822
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1823
                else:
1824 1825
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1826 1827 1828 1829

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1830 1831 1832
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1833
        res._sync_with_cpp()
1834 1835
        return res

X
Xin Pan 已提交
1836
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1837
        """
F
fengjiayi 已提交
1838 1839 1840 1841 1842
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1843
        3. change the :code:`is_test`
Y
yuyang18 已提交
1844 1845 1846
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1847
        Args:
X
Xin Pan 已提交
1848 1849
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1850

Y
yuyang18 已提交
1851 1852 1853 1854 1855 1856
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1857
        res = Program()
1858
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1859 1860 1861 1862

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1863
        if prune_read_op:
1864 1865 1866 1867 1868 1869 1870 1871 1872
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1873
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1874 1875

        # change all `is_test` attributes to True
M
minqiyang 已提交
1876
        for i in six.moves.range(res.desc.num_blocks()):
1877
            block = res.desc.block(i)
M
minqiyang 已提交
1878
            for j in six.moves.range(block.op_size()):
1879 1880
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1881
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1882 1883 1884
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1885
        res._sync_with_cpp()
1886 1887
        return res

1888 1889
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1890 1891 1892 1893 1894 1895 1896
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1897
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1898 1899 1900 1901

        Returns:
            Program: A deserialized program desc.
        """
1902 1903
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1904
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1905
        p._sync_with_cpp()
1906
        return p
Y
Yu Yang 已提交
1907

D
dzhwinter 已提交
1908 1909
    @property
    def random_seed(self):
Y
yuyang18 已提交
1910 1911 1912 1913 1914 1915
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1916 1917
        return self._seed

Q
qiaolongfei 已提交
1918 1919
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1920 1921 1922
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1923 1924
        return self.desc.num_blocks()

D
dzhwinter 已提交
1925 1926 1927 1928 1929 1930
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1931
    def __repr__(self):
1932
        return self.__str__()
1933

Y
Yu Yang 已提交
1934
    def global_block(self):
Y
yuyang18 已提交
1935 1936 1937
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1938 1939
        return self.blocks[0]

Q
Qiao Longfei 已提交
1940
    def block(self, index):
Y
yuyang18 已提交
1941 1942 1943 1944 1945 1946 1947 1948
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1949 1950
        return self.blocks[index]

Y
Yu Yang 已提交
1951
    def current_block(self):
Y
yuyang18 已提交
1952 1953 1954 1955
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1956 1957
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1958
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1969
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1970 1971 1972
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1973 1974 1975 1976
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1977
    def _rollback(self):
Y
yuyang18 已提交
1978 1979 1980 1981 1982
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1983 1984
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1985
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1996 1997 1998
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1999
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2000

W
Wu Yi 已提交
2001
    def _copy_param_info_from(self, other):
2002
        """
2003
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2004

Y
yuyang18 已提交
2005 2006 2007
        Notes: This is a very low level API. Users should not invoke it
        directly.

2008 2009 2010 2011 2012 2013 2014
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2015
            raise TypeError("_copy_param_info_from should be invoked with "
2016 2017 2018
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2019
            raise ValueError("_copy_param_info_from should be invoked with two "
2020
                             "program, with represent the same topology")
W
Wu Yi 已提交
2021
        self.global_block()._copy_param_info_from(other.global_block())
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2042
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2043 2044
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2045

Y
yuyang18 已提交
2046 2047 2048
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2049 2050 2051 2052 2053 2054 2055
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2056
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2057 2058 2059
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2060
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2061
                             "program, with represent the same topology")
2062
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2063 2064 2065
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2066
    def list_vars(self):
Y
yuyang18 已提交
2067 2068 2069 2070 2071 2072
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2073
        for each_block in self.blocks:
2074
            for each_var in list(each_block.vars.values()):
2075 2076
                yield each_var

Y
Yu Yang 已提交
2077

Y
Yu Yang 已提交
2078
class Parameter(Variable):
2079
    """
2080
    Parameter is derived from Variable. A parameter is a persistable
2081
    Variable, and will be updated by optimizers after each iteration.
2082
    The training of a neural network is essentially the updating of
2083 2084
    its parameters.

2085
    Relative to a general Variable, a Parameter has several its own
2086 2087
    member variables:

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2100 2101
    """

Y
Yu Yang 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2112 2113 2114

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2115 2116 2117 2118
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2119 2120
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2121
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2122

W
wanghaoshuang 已提交
2123
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2124

F
fengjiayi 已提交
2125 2126 2127
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2128 2129 2130
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2131

F
update  
fengjiayi 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2146
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2147
            for attr_name in additional_attr:
2148 2149
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2150 2151
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2152 2153 2154 2155
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2156

Y
Yu Yang 已提交
2157
# program is a global instance.
Y
Yu Yang 已提交
2158 2159
_main_program_ = Program()
_startup_program_ = Program()
2160

2161

2162
def default_startup_program():
Y
Yu Yang 已提交
2163
    """
Y
yuyang18 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2173

Y
Yu Yang 已提交
2174 2175 2176
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2177
    return _startup_program_
2178

2179

2180
def default_main_program():
Y
Yu Yang 已提交
2181
    """
Y
yuyang18 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2191

Y
Yu Yang 已提交
2192 2193 2194
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2195
    return _main_program_
Y
Yu Yang 已提交
2196 2197 2198 2199 2200


def switch_main_program(program):
    """
    Switch the main program to a new program.
2201

Y
Yu Yang 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2216
    Switch the startup program to a new program
Y
Yu Yang 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2232 2233 2234
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2235

Y
Yu Yang 已提交
2236
    Examples:
Y
yuyang18 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2247

Y
Yu Yang 已提交
2248
    Examples:
Y
yuyang18 已提交
2249 2250 2251 2252 2253 2254

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2255

Y
Yu Yang 已提交
2256
    Args:
Y
yuyang18 已提交
2257
        main_program(Program): New main program inside `with` statement.
2258
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2272 2273


W
Wu Yi 已提交
2274
def _get_var(name, program=None):
X
xuwei06 已提交
2275
    """
Y
yuyang18 已提交
2276
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2277

X
xuwei06 已提交
2278 2279 2280
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2281
        If None, default_global_program() will be used.
X
xuwei06 已提交
2282 2283 2284 2285 2286 2287 2288

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2289
    assert isinstance(program, Program)
X
xuwei06 已提交
2290 2291

    return program.global_block().var(name)
2292 2293 2294 2295 2296 2297 2298 2299 2300


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace