README.md 15.9 KB
Newer Older
K
Kaipeng Deng 已提交
1
English | [简体中文](README_cn.md)
K
Kaipeng Deng 已提交
2

K
Kaipeng Deng 已提交
3
# PP-YOLO
K
Kaipeng Deng 已提交
4

K
Kaipeng Deng 已提交
5 6 7 8 9 10
## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
- [Future Work](#Future_Work)
- [Appendix](#Appendix)
K
Kaipeng Deng 已提交
11

K
Kaipeng Deng 已提交
12
## Introduction
K
Kaipeng Deng 已提交
13

K
Kaipeng Deng 已提交
14 15
[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 1.8.4(will release in mid-August 202) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev) is required to run this PP-YOLO。

K
Kaipeng Deng 已提交
16
PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.9% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.
K
Kaipeng Deng 已提交
17 18 19 20 21

<div align="center">
  <img src="../../docs/images/ppyolo_map_fps.png" width=500 />
</div>

K
Kaipeng Deng 已提交
22
PP-YOLO improved performance and speed of YOLOv3 with following methods:
K
Kaipeng Deng 已提交
23

K
Kaipeng Deng 已提交
24 25
- Better backbone: ResNet50vd-DCN
- Larger training batch size: 8 GPUs and mini-batch size as 24 on each GPU
K
Kaipeng Deng 已提交
26 27 28 29 30 31 32
- [Drop Block](https://arxiv.org/abs/1810.12890)
- [Exponential Moving Average](https://www.investopedia.com/terms/e/ema.asp)
- [IoU Loss](https://arxiv.org/pdf/1902.09630.pdf)
- [Grid Sensitive](https://arxiv.org/abs/2004.10934)
- [Matrix NMS](https://arxiv.org/pdf/2003.10152.pdf)
- [CoordConv](https://arxiv.org/abs/1807.03247)
- [Spatial Pyramid Pooling](https://arxiv.org/abs/1406.4729)
K
Kaipeng Deng 已提交
33
- Better ImageNet pretrain weights
K
Kaipeng Deng 已提交
34

K
Kaipeng Deng 已提交
35
## Model Zoo
K
Kaipeng Deng 已提交
36

K
Kaipeng Deng 已提交
37
### PP-YOLO
K
Kaipeng Deng 已提交
38

K
Kaipeng Deng 已提交
39 40 41 42 43 44
|          Model           | GPU number | images/GPU |  backbone  | input shape | Box AP<sup>val</sup> | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config  |
|:------------------------:|:----------:|:----------:|:----------:| :----------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: | :-----: |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     608     |           -          |         43.5          |       62       |          105.5          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     512     |           -          |         43.0          |       83       |          138.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     416     |           -          |         41.2          |       96       |          164.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     320     |           -          |         38.0          |      123       |          199.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
45 46 47 48 49 50 51 52
| PP-YOLO                  |     8      |     24     | ResNet50vd |     608     |         44.8         |         45.2          |      72.9      |          155.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     512     |         43.9         |         44.4          |      89.9      |          188.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     416     |         42.1         |         42.5          |     109.1      |          215.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     320     |         38.9         |         39.3          |     132.2      |          242.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     608     |         45.3         |         45.9          |      72.9      |          155.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     512     |         44.4         |         45.0          |      89.9      |          188.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     416     |         42.7         |         43.2          |     109.1      |          215.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     320     |         39.5         |         40.1          |     132.2      |          242.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_2x.yml)                   |
K
Kaipeng Deng 已提交
53

K
Kaipeng Deng 已提交
54
**Notes:**
K
Kaipeng Deng 已提交
55

K
Kaipeng Deng 已提交
56
- PP-YOLO is trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
57 58 59 60 61 62
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too)
- YOLOv4(AlexyAB) performance and inference speed is copy from single Tesla V100 testing results in [YOLOv4 github repo](https://github.com/AlexeyAB/darknet), Tesla V100 TensorRT FP16 inference speed is testing with tkDNN configuration and TensorRT 5.1.2.2 on single Tesla V100 based on [AlexyAB/darknet repo](https://github.com/AlexeyAB/darknet).
- Download and configuration of YOLOv4(AlexyAB) is reproduced model of YOLOv4 in PaddleDetection, whose evaluation performance is same as YOLOv4(AlexyAB), and finetune training is supported in PaddleDetection currently, reproducing by training from backbone pretrain weights is on working, see [PaddleDetection YOLOv4](../yolov4/README.md) for details.
K
Kaipeng Deng 已提交
63

64
### PP-YOLO for mobile
K
Kaipeng Deng 已提交
65

K
Kaipeng Deng 已提交
66 67
|          Model           | GPU number | images/GPU |  backbone  | input shape | Box AP50<sup>val</sup> | Box AP50<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config  |
|:------------------------:|:----------:|:----------:|:----------:| :----------:| :--------------------: | :---------------------: | :------------: | :---------------------: | :------: | :-----: |
68 69
| PP-YOLO_r18vd            |     4      |      32    | ResNet18vd |     416     |          47.0          |          47.7           |     401.6      |          724.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_r18vd.yml)                   |
| PP-YOLO_r18vd            |     4      |      32    | ResNet18vd |     320     |          43.7          |          44.4           |     478.5      |          791.3          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_r18vd.yml)                   |
K
Kaipeng Deng 已提交
70

71 72 73
- PP-YOLO_r18vd is trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,Box AP50<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO_r18vd used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO_r18vd inference speeding testing environment and configuration is same as PP-YOLO above.
K
Kaipeng Deng 已提交
74

K
Kaipeng Deng 已提交
75
## Getting Start
K
Kaipeng Deng 已提交
76

K
Kaipeng Deng 已提交
77
### 1. Training
K
Kaipeng Deng 已提交
78

K
Kaipeng Deng 已提交
79
Training PP-YOLO on 8 GPUs with following command(all commands should be run under PaddleDetection root directory as default), use `--eval` to enable alternate evaluation during training.
K
Kaipeng Deng 已提交
80 81 82 83 84

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train.py -c configs/ppyolo/ppyolo.yml --eval
```

K
Kaipeng Deng 已提交
85
### 2. Evaluation
K
Kaipeng Deng 已提交
86

K
Kaipeng Deng 已提交
87
Evaluating PP-YOLO on COCO val2017 dataset in single GPU with following commands:
K
Kaipeng Deng 已提交
88 89

```bash
K
Kaipeng Deng 已提交
90
# use weights released in PaddleDetection model zoo
K
Kaipeng Deng 已提交
91 92
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
93
# use saved checkpoint in training
K
Kaipeng Deng 已提交
94 95 96
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=output/ppyolo/best_model
```

K
Kaipeng Deng 已提交
97
For evaluation on COCO test-dev2017 dataset, `configs/ppyolo/ppyolo_test.yml` should be used, please download COCO test-dev2017 dataset from [COCO dataset download](https://cocodataset.org/#download) and decompress to pathes configured by `EvalReader.dataset` in `configs/ppyolo/ppyolo_test.yml` and run evaluation by following command:
98 99

```bash
K
Kaipeng Deng 已提交
100
# use weights released in PaddleDetection model zoo
101 102
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
103
# use saved checkpoint in training
104 105 106
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo/best_model
```

K
Kaipeng Deng 已提交
107
Evaluation results will be saved in `bbox.json`, compress it into a `zip` package and upload to [COCO dataset evaluation](https://competitions.codalab.org/competitions/20794#participate) to evaluate.
108

K
Kaipeng Deng 已提交
109
**NOTE:** `configs/ppyolo/ppyolo_test.yml` is only used for evaluation on COCO test-dev2017 dataset, could not be used for training or COCO val2017 dataset evaluating.
110

K
Kaipeng Deng 已提交
111
### 3. Inference
K
Kaipeng Deng 已提交
112

K
Kaipeng Deng 已提交
113
Inference images in single GPU with following commands, use `--infer_img` to inference a single image and `--infer_dir` to inference all images in the directory.
K
Kaipeng Deng 已提交
114 115

```bash
K
Kaipeng Deng 已提交
116
# inference single image
K
Kaipeng Deng 已提交
117 118
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439_640x640.jpg

K
Kaipeng Deng 已提交
119
# inference all images in the directory
K
Kaipeng Deng 已提交
120 121 122
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_dir=demo
```

K
Kaipeng Deng 已提交
123
### 4. Inferece deployment and benchmark
K
Kaipeng Deng 已提交
124

K
Kaipeng Deng 已提交
125
For inference deployment or benchmard, model exported with `tools/export_model.py` should be used and perform inference with Paddle inference library with following commands:
K
Kaipeng Deng 已提交
126 127

```bash
K
Kaipeng Deng 已提交
128
# export model, model will be save in output/ppyolo as default
K
Kaipeng Deng 已提交
129 130
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
131
# inference with Paddle Inference library
K
Kaipeng Deng 已提交
132 133 134
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True
```

K
Kaipeng Deng 已提交
135
Benchmark testing for PP-YOLO uses model without data reading and post-processing(NMS), export model with `--exclude_nms` to prunce NMS for benchmark testing from mode with following commands:
K
Kaipeng Deng 已提交
136 137

```bash
K
Kaipeng Deng 已提交
138
# export model, --exclude_nms to prune NMS part, model will be save in output/ppyolo as default
K
Kaipeng Deng 已提交
139 140
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --exclude_nms

K
Kaipeng Deng 已提交
141
# FP32 benchmark
K
Kaipeng Deng 已提交
142 143
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True

K
Kaipeng Deng 已提交
144
# TensorRT FP16 benchmark
K
Kaipeng Deng 已提交
145 146 147
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16
```

K
Kaipeng Deng 已提交
148
## Future work
K
Kaipeng Deng 已提交
149

K
Kaipeng Deng 已提交
150 151
1. more PP-YOLO tiny model
2. PP-YOLO model with more backbones
K
Kaipeng Deng 已提交
152

K
Kaipeng Deng 已提交
153
## Appendix
K
Kaipeng Deng 已提交
154

K
Kaipeng Deng 已提交
155
Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3.
K
Kaipeng Deng 已提交
156

K
Kaipeng Deng 已提交
157 158 159 160 161 162 163 164 165 166 167
| NO.  |        Model                 | Box AP<sup>val</sup> | Box AP<sup>test</sup> | Params(M) | FLOPs(G) | V100 FP32 FPS |
| :--: | :--------------------------- | :------------------: |:--------------------: | :-------: | :------: | :-----------: |
|  A   | YOLOv3-DarkNet53             |         38.9         |           -           |   59.13   |  65.52   |      58.2     |
|  B   | YOLOv3-ResNet50vd-DCN        |         39.1         |           -           |   43.89   |  44.71   |      79.2     |
|  C   | B + LB + EMA + DropBlock     |         41.4         |           -           |   43.89   |  44.71   |      79.2     |
|  D   | C + IoU Loss                 |         41.9         |           -           |   43.89   |  44.71   |      79.2     |
|  E   | D + IoU Aware                |         42.5         |           -           |   43.90   |  44.71   |      74.9     |
|  F   | E + Grid Sensitive           |         42.8         |           -           |   43.90   |  44.71   |      74.8     |
|  G   | F + Matrix NMS               |         43.5         |           -           |   43.90   |  44.71   |      74.8     |
|  H   | G + CoordConv                |         44.0         |           -           |   43.93   |  44.76   |      74.1     |
|  I   | H + SPP                      |         44.3         |         45.2          |   44.93   |  45.12   |      72.9     |
K
Kaipeng Deng 已提交
168 169
|  J   | I + Better ImageNet Pretrain |         44.8         |         45.2          |   44.93   |  45.12   |      72.9     |
|  K   | J + 2x Scheduler             |         45.3         |         45.9          |   44.93   |  45.12   |      72.9     |
K
Kaipeng Deng 已提交
170

K
Kaipeng Deng 已提交
171
**Notes:**
K
Kaipeng Deng 已提交
172

K
Kaipeng Deng 已提交
173
- Performance and inference spedd are measure with input shape as 608
K
Kaipeng Deng 已提交
174
- All models are trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,`Box AP` is evaluation results as `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
175 176
- Inference speed is tested on single Tesla V100 with batch size as 1 following test method and environment configuration in benchmark above.
- [YOLOv3-DarkNet53](../yolov3_darknet.yml) with mAP as 38.9 is optimized YOLOv3 model in PaddleDetection,see [Model Zoo](../../docs/MODEL_ZOO.md) for details.