README.md 14.0 KB
Newer Older
K
Kaipeng Deng 已提交
1
English | [简体中文](README_cn.md)
K
Kaipeng Deng 已提交
2

K
Kaipeng Deng 已提交
3
# PP-YOLO
K
Kaipeng Deng 已提交
4

K
Kaipeng Deng 已提交
5 6 7 8 9 10
## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
- [Future Work](#Future_Work)
- [Appendix](#Appendix)
K
Kaipeng Deng 已提交
11

K
Kaipeng Deng 已提交
12
## Introduction
K
Kaipeng Deng 已提交
13

K
Kaipeng Deng 已提交
14 15 16
[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 1.8.4(will release in mid-August 202) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev) is required to run this PP-YOLO。

PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.2% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.
K
Kaipeng Deng 已提交
17 18 19 20 21

<div align="center">
  <img src="../../docs/images/ppyolo_map_fps.png" width=500 />
</div>

K
Kaipeng Deng 已提交
22
PP-YOLO improved performance and speed of YOLOv3 with following methods:
K
Kaipeng Deng 已提交
23

K
Kaipeng Deng 已提交
24 25
- Better backbone: ResNet50vd-DCN
- Larger training batch size: 8 GPUs and mini-batch size as 24 on each GPU
K
Kaipeng Deng 已提交
26 27 28 29 30 31 32
- [Drop Block](https://arxiv.org/abs/1810.12890)
- [Exponential Moving Average](https://www.investopedia.com/terms/e/ema.asp)
- [IoU Loss](https://arxiv.org/pdf/1902.09630.pdf)
- [Grid Sensitive](https://arxiv.org/abs/2004.10934)
- [Matrix NMS](https://arxiv.org/pdf/2003.10152.pdf)
- [CoordConv](https://arxiv.org/abs/1807.03247)
- [Spatial Pyramid Pooling](https://arxiv.org/abs/1406.4729)
K
Kaipeng Deng 已提交
33
- Better ImageNet pretrain weights
K
Kaipeng Deng 已提交
34

K
Kaipeng Deng 已提交
35
## Model Zoo
K
Kaipeng Deng 已提交
36

K
Kaipeng Deng 已提交
37
### PP-YOLO
K
Kaipeng Deng 已提交
38

K
Kaipeng Deng 已提交
39 40 41 42 43 44 45 46 47 48
|          Model           | GPU number | images/GPU |  backbone  | input shape | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config  |
|:------------------------:|:----------:|:----------:|:----------:| :----------:| :-------------------: | :------------: | :---------------------: | :------: | :-----: |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     608     |         43.5          |       62       |          105.5          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     512     |         43.0          |       83       |          138.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     416     |         41.2          |       96       |          164.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     320     |         38.0          |      123       |          199.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| PP-YOLO                  |     8      |     24    | ResNet50vd  |     608     |         45.2          |      72.9      |          155.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24    | ResNet50vd  |     512     |         44.4          |      89.9      |          188.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24    | ResNet50vd  |     416     |         42.5          |     109.1      |          215.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24    | ResNet50vd  |     320     |         39.3          |     132.2      |          242.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
K
Kaipeng Deng 已提交
49

K
Kaipeng Deng 已提交
50
**Notes:**
K
Kaipeng Deng 已提交
51

K
Kaipeng Deng 已提交
52
- PP-YOLO is trained on COCO train2017 datast and evaluated on test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
53 54 55 56 57 58
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too)
- YOLOv4(AlexyAB) performance and inference speed is copy from single Tesla V100 testing results in [YOLOv4 github repo](https://github.com/AlexeyAB/darknet), Tesla V100 TensorRT FP16 inference speed is testing with tkDNN configuration and TensorRT 5.1.2.2 on single Tesla V100 based on [AlexyAB/darknet repo](https://github.com/AlexeyAB/darknet).
- Download and configuration of YOLOv4(AlexyAB) is reproduced model of YOLOv4 in PaddleDetection, whose evaluation performance is same as YOLOv4(AlexyAB), and finetune training is supported in PaddleDetection currently, reproducing by training from backbone pretrain weights is on working, see [PaddleDetection YOLOv4](../yolov4/README.md) for details.
K
Kaipeng Deng 已提交
59

K
Kaipeng Deng 已提交
60
### PP-YOLO tiny
K
Kaipeng Deng 已提交
61

K
Kaipeng Deng 已提交
62 63 64 65
|          Model           | GPU number | images/GPU |  backbone  | input shape | Box AP50<sup>val</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config  |
|:------------------------:|:----------:|:----------:|:----------:| :----------:| :--------------------: | :------------: | :---------------------: | :------: | :-----: |
| PP-YOLO tiny             |     4      |      32    | ResNet18vd |     416     |          47.0          |     401.6      |          724.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_tiny.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_tiny.yml)                   |
| PP-YOLO tiny             |     4      |      32    | ResNet18vd |     320     |          43.7          |     478.5      |          791.3          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_tiny.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_tiny.yml)                   |
K
Kaipeng Deng 已提交
66

K
Kaipeng Deng 已提交
67
- PP-YOLO tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP50<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
K
Kaipeng Deng 已提交
68 69
- PP-YOLO tiny used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO tiny inference speeding testing environment and configuration is same as PP-YOLO above.
K
Kaipeng Deng 已提交
70

K
Kaipeng Deng 已提交
71
## Getting Start
K
Kaipeng Deng 已提交
72

K
Kaipeng Deng 已提交
73
### 1. Training
K
Kaipeng Deng 已提交
74

K
Kaipeng Deng 已提交
75
Training PP-YOLO on 8 GPUs with following command(all commands should be run under PaddleDetection root directory as default), use `--eval` to enable alternate evaluation during training.
K
Kaipeng Deng 已提交
76 77 78 79 80

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train.py -c configs/ppyolo/ppyolo.yml --eval
```

K
Kaipeng Deng 已提交
81
### 2. Evaluation
K
Kaipeng Deng 已提交
82

K
Kaipeng Deng 已提交
83
Evaluating PP-YOLO on COCO val2017 dataset in single GPU with following commands:
K
Kaipeng Deng 已提交
84 85

```bash
K
Kaipeng Deng 已提交
86
# use weights released in PaddleDetection model zoo
K
Kaipeng Deng 已提交
87 88
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
89
# use saved checkpoint in training
K
Kaipeng Deng 已提交
90 91 92
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=output/ppyolo/best_model
```

K
Kaipeng Deng 已提交
93
For evaluation on COCO test-dev2017 dataset, `configs/ppyolo/ppyolo_test.yml` should be used, please download COCO test-dev2017 dataset from [COCO dataset download](https://cocodataset.org/#download) and decompress to pathes configured by `EvalReader.dataset` in `configs/ppyolo/ppyolo_test.yml` and run evaluation by following command:
94 95

```bash
K
Kaipeng Deng 已提交
96
# use weights released in PaddleDetection model zoo
97 98
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
99
# use saved checkpoint in training
100 101 102
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo/best_model
```

K
Kaipeng Deng 已提交
103
Evaluation results will be saved in `bbox.json`, compress it into a `zip` package and upload to [COCO dataset evaluation](https://competitions.codalab.org/competitions/20794#participate) to evaluate.
104

K
Kaipeng Deng 已提交
105
**NOTE:** `configs/ppyolo/ppyolo_test.yml` is only used for evaluation on COCO test-dev2017 dataset, could not be used for training or COCO val2017 dataset evaluating.
106

K
Kaipeng Deng 已提交
107
### 3. Inference
K
Kaipeng Deng 已提交
108

K
Kaipeng Deng 已提交
109
Inference images in single GPU with following commands, use `--infer_img` to inference a single image and `--infer_dir` to inference all images in the directory.
K
Kaipeng Deng 已提交
110 111

```bash
K
Kaipeng Deng 已提交
112
# inference single image
K
Kaipeng Deng 已提交
113 114
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439_640x640.jpg

K
Kaipeng Deng 已提交
115
# inference all images in the directory
K
Kaipeng Deng 已提交
116 117 118
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_dir=demo
```

K
Kaipeng Deng 已提交
119
### 4. Inferece deployment and benchmark
K
Kaipeng Deng 已提交
120

K
Kaipeng Deng 已提交
121
For inference deployment or benchmard, model exported with `tools/export_model.py` should be used and perform inference with Paddle inference library with following commands:
K
Kaipeng Deng 已提交
122 123

```bash
K
Kaipeng Deng 已提交
124
# export model, model will be save in output/ppyolo as default
K
Kaipeng Deng 已提交
125 126
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
127
# inference with Paddle Inference library
K
Kaipeng Deng 已提交
128 129 130
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True
```

K
Kaipeng Deng 已提交
131
Benchmark testing for PP-YOLO uses model without data reading and post-processing(NMS), export model with `--exclude_nms` to prunce NMS for benchmark testing from mode with following commands:
K
Kaipeng Deng 已提交
132 133

```bash
K
Kaipeng Deng 已提交
134
# export model, --exclude_nms to prune NMS part, model will be save in output/ppyolo as default
K
Kaipeng Deng 已提交
135 136
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --exclude_nms

K
Kaipeng Deng 已提交
137
# FP32 benchmark
K
Kaipeng Deng 已提交
138 139
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True

K
Kaipeng Deng 已提交
140
# TensorRT FP16 benchmark
K
Kaipeng Deng 已提交
141 142 143
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16
```

K
Kaipeng Deng 已提交
144
## Future work
K
Kaipeng Deng 已提交
145

K
Kaipeng Deng 已提交
146 147
1. more PP-YOLO tiny model
2. PP-YOLO model with more backbones
K
Kaipeng Deng 已提交
148

K
Kaipeng Deng 已提交
149
## Appendix
K
Kaipeng Deng 已提交
150

K
Kaipeng Deng 已提交
151
Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3.
K
Kaipeng Deng 已提交
152

K
Kaipeng Deng 已提交
153 154 155 156 157 158 159 160 161 162 163 164
| NO.  |        Model                 | Box AP<sup>val</sup> | Box AP<sup>test</sup> | Params(M) | FLOPs(G) | V100 FP32 FPS |
| :--: | :--------------------------- | :------------------: |:--------------------: | :-------: | :------: | :-----------: |
|  A   | YOLOv3-DarkNet53             |         38.9         |           -           |   59.13   |  65.52   |      58.2     |
|  B   | YOLOv3-ResNet50vd-DCN        |         39.1         |           -           |   43.89   |  44.71   |      79.2     |
|  C   | B + LB + EMA + DropBlock     |         41.4         |           -           |   43.89   |  44.71   |      79.2     |
|  D   | C + IoU Loss                 |         41.9         |           -           |   43.89   |  44.71   |      79.2     |
|  E   | D + IoU Aware                |         42.5         |           -           |   43.90   |  44.71   |      74.9     |
|  F   | E + Grid Sensitive           |         42.8         |           -           |   43.90   |  44.71   |      74.8     |
|  G   | F + Matrix NMS               |         43.5         |           -           |   43.90   |  44.71   |      74.8     |
|  H   | G + CoordConv                |         44.0         |           -           |   43.93   |  44.76   |      74.1     |
|  I   | H + SPP                      |         44.3         |         45.2          |   44.93   |  45.12   |      72.9     |
|  J   | I + Better ImageNet Pretrain |         44.6         |         45.2          |   44.93   |  45.12   |      72.9     |
K
Kaipeng Deng 已提交
165

K
Kaipeng Deng 已提交
166
**Notes:**
K
Kaipeng Deng 已提交
167

K
Kaipeng Deng 已提交
168
- Performance and inference spedd are measure with input shape as 608
K
Kaipeng Deng 已提交
169
- All models are trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,`Box AP` is evaluation results as `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
170 171
- Inference speed is tested on single Tesla V100 with batch size as 1 following test method and environment configuration in benchmark above.
- [YOLOv3-DarkNet53](../yolov3_darknet.yml) with mAP as 38.9 is optimized YOLOv3 model in PaddleDetection,see [Model Zoo](../../docs/MODEL_ZOO.md) for details.