ops.py 56.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16
from numbers import Integral
G
Guanghua Yu 已提交
17 18
import math
import six
19 20

from paddle import fluid
21 22
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.initializer import NumpyArrayInitializer
Y
Yuan Gao 已提交
23 24
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
25
from ppdet.core.workspace import register, serializable
littletomatodonkey's avatar
littletomatodonkey 已提交
26
from ppdet.utils.bbox_utils import bbox_overlaps, box_to_delta
27 28

__all__ = [
29 30 31 32 33
    'AnchorGenerator', 'AnchorGrid', 'DropBlock', 'RPNTargetAssign',
    'GenerateProposals', 'MultiClassNMS', 'BBoxAssigner', 'MaskAssigner',
    'RoIAlign', 'RoIPool', 'MultiBoxHead', 'SSDLiteMultiBoxHead',
    'SSDOutputDecoder', 'RetinaTargetAssign', 'RetinaOutputDecoder',
    'ConvNorm', 'DeformConvNorm', 'MultiClassSoftNMS', 'LibraBBoxAssigner'
34 35 36
]


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
def _conv_offset(input, filter_size, stride, padding, act=None, name=None):
    out_channel = filter_size * filter_size * 3
    out = fluid.layers.conv2d(
        input,
        num_filters=out_channel,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        param_attr=ParamAttr(
            initializer=fluid.initializer.Constant(value=0),
            name=name + ".w_0"),
        bias_attr=ParamAttr(
            initializer=fluid.initializer.Constant(value=0),
            name=name + ".b_0"),
        act=act,
        name=name)
    return out


def DeformConvNorm(input,
                   num_filters,
                   filter_size,
                   stride=1,
                   groups=1,
                   norm_decay=0.,
                   norm_type='affine_channel',
                   norm_groups=32,
                   dilation=1,
                   lr_scale=1,
                   freeze_norm=False,
                   act=None,
                   norm_name=None,
                   initializer=None,
                   bias_attr=False,
                   name=None):
    if bias_attr:
        bias_para = ParamAttr(
            name=name + "_bias",
            initializer=fluid.initializer.Constant(value=0),
            learning_rate=lr_scale * 2)
    else:
        bias_para = False
    offset_mask = _conv_offset(
        input=input,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) // 2,
        act=None,
        name=name + "_conv_offset")
    offset_channel = filter_size**2 * 2
    mask_channel = filter_size**2
    offset, mask = fluid.layers.split(
        input=offset_mask,
        num_or_sections=[offset_channel, mask_channel],
        dim=1)
    mask = fluid.layers.sigmoid(mask)
    conv = fluid.layers.deformable_conv(
        input=input,
        offset=offset,
        mask=mask,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) // 2 * dilation,
        dilation=dilation,
        groups=groups,
        deformable_groups=1,
        im2col_step=1,
        param_attr=ParamAttr(
            name=name + "_weights",
            initializer=initializer,
            learning_rate=lr_scale),
        bias_attr=bias_para,
        name=name + ".conv2d.output.1")

    norm_lr = 0. if freeze_norm else 1.
    pattr = ParamAttr(
        name=norm_name + '_scale',
        learning_rate=norm_lr * lr_scale,
        regularizer=L2Decay(norm_decay))
    battr = ParamAttr(
        name=norm_name + '_offset',
        learning_rate=norm_lr * lr_scale,
        regularizer=L2Decay(norm_decay))

    if norm_type in ['bn', 'sync_bn']:
        global_stats = True if freeze_norm else False
        out = fluid.layers.batch_norm(
            input=conv,
            act=act,
            name=norm_name + '.output.1',
            param_attr=pattr,
            bias_attr=battr,
            moving_mean_name=norm_name + '_mean',
            moving_variance_name=norm_name + '_variance',
            use_global_stats=global_stats)
        scale = fluid.framework._get_var(pattr.name)
        bias = fluid.framework._get_var(battr.name)
    elif norm_type == 'gn':
        out = fluid.layers.group_norm(
            input=conv,
            act=act,
            name=norm_name + '.output.1',
            groups=norm_groups,
            param_attr=pattr,
            bias_attr=battr)
        scale = fluid.framework._get_var(pattr.name)
        bias = fluid.framework._get_var(battr.name)
    elif norm_type == 'affine_channel':
        scale = fluid.layers.create_parameter(
            shape=[conv.shape[1]],
            dtype=conv.dtype,
            attr=pattr,
            default_initializer=fluid.initializer.Constant(1.))
        bias = fluid.layers.create_parameter(
            shape=[conv.shape[1]],
            dtype=conv.dtype,
            attr=battr,
            default_initializer=fluid.initializer.Constant(0.))
        out = fluid.layers.affine_channel(
            x=conv, scale=scale, bias=bias, act=act)

    if freeze_norm:
        scale.stop_gradient = True
        bias.stop_gradient = True
    return out


Y
Yuan Gao 已提交
165 166 167 168 169 170 171
def ConvNorm(input,
             num_filters,
             filter_size,
             stride=1,
             groups=1,
             norm_decay=0.,
             norm_type='affine_channel',
Y
Yuan Gao 已提交
172 173
             norm_groups=32,
             dilation=1,
174
             lr_scale=1,
Y
Yuan Gao 已提交
175 176
             freeze_norm=False,
             act=None,
Y
Yuan Gao 已提交
177
             norm_name=None,
Y
Yuan Gao 已提交
178
             initializer=None,
179
             bias_attr=False,
Y
Yuan Gao 已提交
180 181
             name=None):
    fan = num_filters
182 183 184 185 186 187 188
    if bias_attr:
        bias_para = ParamAttr(
            name=name + "_bias",
            initializer=fluid.initializer.Constant(value=0),
            learning_rate=lr_scale * 2)
    else:
        bias_para = False
Y
Yuan Gao 已提交
189 190 191 192 193
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
Y
Yuan Gao 已提交
194 195
        padding=((filter_size - 1) // 2) * dilation,
        dilation=dilation,
Y
Yuan Gao 已提交
196 197 198
        groups=groups,
        act=None,
        param_attr=ParamAttr(
199 200 201
            name=name + "_weights",
            initializer=initializer,
            learning_rate=lr_scale),
202
        bias_attr=bias_para,
Y
Yuan Gao 已提交
203 204 205 206
        name=name + '.conv2d.output.1')

    norm_lr = 0. if freeze_norm else 1.
    pattr = ParamAttr(
Y
Yuan Gao 已提交
207
        name=norm_name + '_scale',
208
        learning_rate=norm_lr * lr_scale,
Y
Yuan Gao 已提交
209 210
        regularizer=L2Decay(norm_decay))
    battr = ParamAttr(
Y
Yuan Gao 已提交
211
        name=norm_name + '_offset',
212
        learning_rate=norm_lr * lr_scale,
Y
Yuan Gao 已提交
213 214 215 216 217 218 219
        regularizer=L2Decay(norm_decay))

    if norm_type in ['bn', 'sync_bn']:
        global_stats = True if freeze_norm else False
        out = fluid.layers.batch_norm(
            input=conv,
            act=act,
Y
Yuan Gao 已提交
220
            name=norm_name + '.output.1',
Y
Yuan Gao 已提交
221 222
            param_attr=pattr,
            bias_attr=battr,
Y
Yuan Gao 已提交
223 224
            moving_mean_name=norm_name + '_mean',
            moving_variance_name=norm_name + '_variance',
Y
Yuan Gao 已提交
225 226 227
            use_global_stats=global_stats)
        scale = fluid.framework._get_var(pattr.name)
        bias = fluid.framework._get_var(battr.name)
Y
Yuan Gao 已提交
228 229 230 231 232 233 234 235 236 237
    elif norm_type == 'gn':
        out = fluid.layers.group_norm(
            input=conv,
            act=act,
            name=norm_name + '.output.1',
            groups=norm_groups,
            param_attr=pattr,
            bias_attr=battr)
        scale = fluid.framework._get_var(pattr.name)
        bias = fluid.framework._get_var(battr.name)
Y
Yuan Gao 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    elif norm_type == 'affine_channel':
        scale = fluid.layers.create_parameter(
            shape=[conv.shape[1]],
            dtype=conv.dtype,
            attr=pattr,
            default_initializer=fluid.initializer.Constant(1.))
        bias = fluid.layers.create_parameter(
            shape=[conv.shape[1]],
            dtype=conv.dtype,
            attr=battr,
            default_initializer=fluid.initializer.Constant(0.))
        out = fluid.layers.affine_channel(
            x=conv, scale=scale, bias=bias, act=act)
    if freeze_norm:
        scale.stop_gradient = True
        bias.stop_gradient = True
    return out


257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
def DropBlock(input, block_size, keep_prob, is_test):
    if is_test:
        return input

    def CalculateGamma(input, block_size, keep_prob):
        input_shape = fluid.layers.shape(input)
        feat_shape_tmp = fluid.layers.slice(input_shape, [0], [3], [4])
        feat_shape_tmp = fluid.layers.cast(feat_shape_tmp, dtype="float32")
        feat_shape_t = fluid.layers.reshape(feat_shape_tmp, [1, 1, 1, 1])
        feat_area = fluid.layers.pow(feat_shape_t, factor=2)

        block_shape_t = fluid.layers.fill_constant(
            shape=[1, 1, 1, 1], value=block_size, dtype='float32')
        block_area = fluid.layers.pow(block_shape_t, factor=2)

        useful_shape_t = feat_shape_t - block_shape_t + 1
        useful_area = fluid.layers.pow(useful_shape_t, factor=2)

        upper_t = feat_area * (1 - keep_prob)
        bottom_t = block_area * useful_area
        output = upper_t / bottom_t
        return output

    gamma = CalculateGamma(input, block_size=block_size, keep_prob=keep_prob)
    input_shape = fluid.layers.shape(input)
    p = fluid.layers.expand_as(gamma, input)

    input_shape_tmp = fluid.layers.cast(input_shape, dtype="int64")
    random_matrix = fluid.layers.uniform_random(
        input_shape_tmp, dtype='float32', min=0.0, max=1.0)
    one_zero_m = fluid.layers.less_than(random_matrix, p)
    one_zero_m.stop_gradient = True
    one_zero_m = fluid.layers.cast(one_zero_m, dtype="float32")

    mask_flag = fluid.layers.pool2d(
        one_zero_m,
        pool_size=block_size,
        pool_type='max',
        pool_stride=1,
        pool_padding=block_size // 2)
    mask = 1.0 - mask_flag

    elem_numel = fluid.layers.reduce_prod(input_shape)
C
CodesFarmer 已提交
300 301
    elem_numel_m = fluid.layers.cast(elem_numel, dtype="float32")
    elem_numel_m.stop_gradient = True
302 303

    elem_sum = fluid.layers.reduce_sum(mask)
C
CodesFarmer 已提交
304 305
    elem_sum_m = fluid.layers.cast(elem_sum, dtype="float32")
    elem_sum_m.stop_gradient = True
306 307 308 309 310

    output = input * mask * elem_numel_m / elem_sum_m
    return output


311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
@register
@serializable
class AnchorGenerator(object):
    __op__ = fluid.layers.anchor_generator
    __append_doc__ = True

    def __init__(self,
                 stride=[16.0, 16.0],
                 anchor_sizes=[32, 64, 128, 256, 512],
                 aspect_ratios=[0.5, 1., 2.],
                 variance=[1., 1., 1., 1.]):
        super(AnchorGenerator, self).__init__()
        self.anchor_sizes = anchor_sizes
        self.aspect_ratios = aspect_ratios
        self.variance = variance
        self.stride = stride


329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
@register
@serializable
class AnchorGrid(object):
    """Generate anchor grid

    Args:
        image_size (int or list): input image size, may be a single integer or
            list of [h, w]. Default: 512
        min_level (int): min level of the feature pyramid. Default: 3
        max_level (int): max level of the feature pyramid. Default: 7
        anchor_base_scale: base anchor scale. Default: 4
        num_scales: number of anchor scales. Default: 3
        aspect_ratios: aspect ratios. default: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
    """

    def __init__(self,
                 image_size=512,
                 min_level=3,
                 max_level=7,
                 anchor_base_scale=4,
                 num_scales=3,
                 aspect_ratios=[[1, 1], [1.4, 0.7], [0.7, 1.4]]):
        super(AnchorGrid, self).__init__()
        if isinstance(image_size, Integral):
            self.image_size = [image_size, image_size]
        else:
            self.image_size = image_size
        for dim in self.image_size:
            assert dim % 2 ** max_level == 0, \
                "image size should be multiple of the max level stride"
        self.min_level = min_level
        self.max_level = max_level
        self.anchor_base_scale = anchor_base_scale
        self.num_scales = num_scales
        self.aspect_ratios = aspect_ratios

    @property
    def base_cell(self):
        if not hasattr(self, '_base_cell'):
            self._base_cell = self.make_cell()
        return self._base_cell

    def make_cell(self):
        scales = [2**(i / self.num_scales) for i in range(self.num_scales)]
        scales = np.array(scales)
        ratios = np.array(self.aspect_ratios)
        ws = np.outer(scales, ratios[:, 0]).reshape(-1, 1)
        hs = np.outer(scales, ratios[:, 1]).reshape(-1, 1)
        anchors = np.hstack((-0.5 * ws, -0.5 * hs, 0.5 * ws, 0.5 * hs))
        return anchors

    def make_grid(self, stride):
        cell = self.base_cell * stride * self.anchor_base_scale
        x_steps = np.arange(stride // 2, self.image_size[1], stride)
        y_steps = np.arange(stride // 2, self.image_size[0], stride)
        offset_x, offset_y = np.meshgrid(x_steps, y_steps)
        offset_x = offset_x.flatten()
        offset_y = offset_y.flatten()
        offsets = np.stack((offset_x, offset_y, offset_x, offset_y), axis=-1)
        offsets = offsets[:, np.newaxis, :]
        return (cell + offsets).reshape(-1, 4)

    def generate(self):
        return [
            self.make_grid(2**l)
            for l in range(self.min_level, self.max_level + 1)
        ]

    def __call__(self):
        if not hasattr(self, '_anchor_vars'):
            anchor_vars = []
            helper = LayerHelper('anchor_grid')
            for idx, l in enumerate(range(self.min_level, self.max_level + 1)):
                stride = 2**l
                anchors = self.make_grid(stride)
                var = helper.create_parameter(
                    attr=ParamAttr(name='anchors_{}'.format(idx)),
                    shape=anchors.shape,
                    dtype='float32',
                    stop_gradient=True,
                    default_initializer=NumpyArrayInitializer(anchors))
                anchor_vars.append(var)
                var.persistable = True
            self._anchor_vars = anchor_vars

        return self._anchor_vars


417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
@register
@serializable
class RPNTargetAssign(object):
    __op__ = fluid.layers.rpn_target_assign
    __append_doc__ = True

    def __init__(self,
                 rpn_batch_size_per_im=256,
                 rpn_straddle_thresh=0.,
                 rpn_fg_fraction=0.5,
                 rpn_positive_overlap=0.7,
                 rpn_negative_overlap=0.3,
                 use_random=True):
        super(RPNTargetAssign, self).__init__()
        self.rpn_batch_size_per_im = rpn_batch_size_per_im
        self.rpn_straddle_thresh = rpn_straddle_thresh
        self.rpn_fg_fraction = rpn_fg_fraction
        self.rpn_positive_overlap = rpn_positive_overlap
        self.rpn_negative_overlap = rpn_negative_overlap
        self.use_random = use_random


@register
@serializable
class GenerateProposals(object):
    __op__ = fluid.layers.generate_proposals
    __append_doc__ = True

    def __init__(self,
                 pre_nms_top_n=6000,
                 post_nms_top_n=1000,
                 nms_thresh=.5,
                 min_size=.1,
                 eta=1.):
        super(GenerateProposals, self).__init__()
        self.pre_nms_top_n = pre_nms_top_n
        self.post_nms_top_n = post_nms_top_n
        self.nms_thresh = nms_thresh
        self.min_size = min_size
        self.eta = eta


@register
class MaskAssigner(object):
    __op__ = fluid.layers.generate_mask_labels
    __append_doc__ = True
463
    __shared__ = ['num_classes']
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

    def __init__(self, num_classes=81, resolution=14):
        super(MaskAssigner, self).__init__()
        self.num_classes = num_classes
        self.resolution = resolution


@register
@serializable
class MultiClassNMS(object):
    __op__ = fluid.layers.multiclass_nms
    __append_doc__ = True

    def __init__(self,
                 score_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 nms_threshold=.5,
                 normalized=False,
                 nms_eta=1.0,
                 background_label=0):
        super(MultiClassNMS, self).__init__()
        self.score_threshold = score_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.nms_threshold = nms_threshold
        self.normalized = normalized
        self.nms_eta = nms_eta
        self.background_label = background_label

494

495 496 497
@register
@serializable
class MultiClassSoftNMS(object):
498 499 500 501 502 503 504
    def __init__(
            self,
            score_threshold=0.01,
            keep_top_k=300,
            softnms_sigma=0.5,
            normalized=False,
            background_label=0, ):
505 506 507 508 509 510
        super(MultiClassSoftNMS, self).__init__()
        self.score_threshold = score_threshold
        self.keep_top_k = keep_top_k
        self.softnms_sigma = softnms_sigma
        self.normalized = normalized
        self.background_label = background_label
511 512

    def __call__(self, bboxes, scores):
littletomatodonkey's avatar
littletomatodonkey 已提交
513
        def create_tmp_var(program, name, dtype, shape, lod_level):
514
            return program.current_block().create_var(
littletomatodonkey's avatar
littletomatodonkey 已提交
515
                name=name, dtype=dtype, shape=shape, lod_level=lod_level)
516

517 518 519 520 521 522 523 524
        def _soft_nms_for_cls(dets, sigma, thres):
            """soft_nms_for_cls"""
            dets_final = []
            while len(dets) > 0:
                maxpos = np.argmax(dets[:, 0])
                dets_final.append(dets[maxpos].copy())
                ts, tx1, ty1, tx2, ty2 = dets[maxpos]
                scores = dets[:, 0]
525 526
                # force remove bbox at maxpos
                scores[maxpos] = -1
527 528 529 530 531 532 533 534 535 536 537 538 539
                x1 = dets[:, 1]
                y1 = dets[:, 2]
                x2 = dets[:, 3]
                y2 = dets[:, 4]
                eta = 0 if self.normalized else 1
                areas = (x2 - x1 + eta) * (y2 - y1 + eta)
                xx1 = np.maximum(tx1, x1)
                yy1 = np.maximum(ty1, y1)
                xx2 = np.minimum(tx2, x2)
                yy2 = np.minimum(ty2, y2)
                w = np.maximum(0.0, xx2 - xx1 + eta)
                h = np.maximum(0.0, yy2 - yy1 + eta)
                inter = w * h
540
                ovr = inter / (areas + areas[maxpos] - inter)
541 542 543 544 545 546
                weight = np.exp(-(ovr * ovr) / sigma)
                scores = scores * weight
                idx_keep = np.where(scores >= thres)
                dets[:, 0] = scores
                dets = dets[idx_keep]
            dets_final = np.array(dets_final).reshape(-1, 5)
547
            return dets_final
548 549 550 551 552

        def _soft_nms(bboxes, scores):
            bboxes = np.array(bboxes)
            scores = np.array(scores)
            class_nums = scores.shape[-1]
553

554 555 556
            softnms_thres = self.score_threshold
            softnms_sigma = self.softnms_sigma
            keep_top_k = self.keep_top_k
557

558 559
            cls_boxes = [[] for _ in range(class_nums)]
            cls_ids = [[] for _ in range(class_nums)]
560

561 562 563 564 565
            start_idx = 1 if self.background_label == 0 else 0
            for j in range(start_idx, class_nums):
                inds = np.where(scores[:, j] >= softnms_thres)[0]
                scores_j = scores[inds, j]
                rois_j = bboxes[inds, j, :]
566 567
                dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype(
                    np.float32, copy=False)
568 569 570
                cls_rank = np.argsort(-dets_j[:, 0])
                dets_j = dets_j[cls_rank]

571 572 573 574 575
                cls_boxes[j] = _soft_nms_for_cls(
                    dets_j, sigma=softnms_sigma, thres=softnms_thres)
                cls_ids[j] = np.array([j] * cls_boxes[j].shape[0]).reshape(-1,
                                                                           1)

576 577
            cls_boxes = np.vstack(cls_boxes[start_idx:])
            cls_ids = np.vstack(cls_ids[start_idx:])
578
            pred_result = np.hstack([cls_ids, cls_boxes])
579 580

            # Limit to max_per_image detections **over all classes**
581
            image_scores = cls_boxes[:, 0]
582 583 584 585
            if len(image_scores) > keep_top_k:
                image_thresh = np.sort(image_scores)[-keep_top_k]
                keep = np.where(cls_boxes[:, 0] >= image_thresh)[0]
                pred_result = pred_result[keep, :]
586

587 588 589
            res = fluid.LoDTensor()
            res.set_lod([[0, pred_result.shape[0]]])
            if pred_result.shape[0] == 0:
590
                pred_result = np.array([[1]], dtype=np.float32)
591
            res.set(pred_result, fluid.CPUPlace())
592

593
            return res
594 595 596 597 598

        pred_result = create_tmp_var(
            fluid.default_main_program(),
            name='softnms_pred_result',
            dtype='float32',
W
wangguanzhong 已提交
599
            shape=[-1, 6],
littletomatodonkey's avatar
littletomatodonkey 已提交
600
            lod_level=1)
601 602
        fluid.layers.py_func(
            func=_soft_nms, x=[bboxes, scores], out=pred_result)
603 604
        return pred_result

605

littletomatodonkey's avatar
littletomatodonkey 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
@register
@serializable
class MultiClassDiouNMS(object):
    def __init__(
            self,
            score_threshold=0.05,
            keep_top_k=100,
            nms_threshold=0.5,
            normalized=False,
            background_label=0, ):
        super(MultiClassDiouNMS, self).__init__()
        self.score_threshold = score_threshold
        self.nms_threshold = nms_threshold
        self.keep_top_k = keep_top_k
        self.normalized = normalized
        self.background_label = background_label

    def __call__(self, bboxes, scores):
        def create_tmp_var(program, name, dtype, shape, lod_level):
            return program.current_block().create_var(
                name=name, dtype=dtype, shape=shape, lod_level=lod_level)

        def _calc_diou_term(dets1, dets2):
            eps = 1.e-10
            eta = 0 if self.normalized else 1

            x1, y1, x2, y2 = dets1[0], dets1[1], dets1[2], dets1[3]
            x1g, y1g, x2g, y2g = dets2[0], dets2[1], dets2[2], dets2[3]

            cx = (x1 + x2) / 2
            cy = (y1 + y2) / 2
            w = x2 - x1 + eta
            h = y2 - y1 + eta

            cxg = (x1g + x2g) / 2
            cyg = (y1g + y2g) / 2
            wg = x2g - x1g + eta
            hg = y2g - y1g + eta

            x2 = np.maximum(x1, x2)
            y2 = np.maximum(y1, y2)

            # A or B
            xc1 = np.minimum(x1, x1g)
            yc1 = np.minimum(y1, y1g)
            xc2 = np.maximum(x2, x2g)
            yc2 = np.maximum(y2, y2g)

            # DIOU term
            dist_intersection = (cx - cxg)**2 + (cy - cyg)**2
            dist_union = (xc2 - xc1)**2 + (yc2 - yc1)**2
            diou_term = (dist_intersection + eps) / (dist_union + eps)
            return diou_term

        def _diou_nms_for_cls(dets, thres):
            """_diou_nms_for_cls"""
            scores = dets[:, 0]
            x1 = dets[:, 1]
            y1 = dets[:, 2]
            x2 = dets[:, 3]
            y2 = dets[:, 4]
            eta = 0 if self.normalized else 1
            areas = (x2 - x1 + eta) * (y2 - y1 + eta)
            dt_num = dets.shape[0]
            order = np.array(range(dt_num))

            keep = []
            while order.size > 0:
                i = order[0]
                keep.append(i)
                xx1 = np.maximum(x1[i], x1[order[1:]])
                yy1 = np.maximum(y1[i], y1[order[1:]])
                xx2 = np.minimum(x2[i], x2[order[1:]])
                yy2 = np.minimum(y2[i], y2[order[1:]])

                w = np.maximum(0.0, xx2 - xx1 + eta)
                h = np.maximum(0.0, yy2 - yy1 + eta)
                inter = w * h
                ovr = inter / (areas[i] + areas[order[1:]] - inter)

                diou_term = _calc_diou_term([x1[i], y1[i], x2[i], y2[i]], [
                    x1[order[1:]], y1[order[1:]], x2[order[1:]], y2[order[1:]]
                ])

                inds = np.where(ovr - diou_term <= thres)[0]

                order = order[inds + 1]

            dets_final = dets[keep]
            return dets_final

        def _diou_nms(bboxes, scores):
            bboxes = np.array(bboxes)
            scores = np.array(scores)
            class_nums = scores.shape[-1]

            score_threshold = self.score_threshold
            nms_threshold = self.nms_threshold
            keep_top_k = self.keep_top_k

            cls_boxes = [[] for _ in range(class_nums)]
            cls_ids = [[] for _ in range(class_nums)]

            start_idx = 1 if self.background_label == 0 else 0
            for j in range(start_idx, class_nums):
                inds = np.where(scores[:, j] >= score_threshold)[0]
                scores_j = scores[inds, j]
                rois_j = bboxes[inds, j, :]
                dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype(
                    np.float32, copy=False)
                cls_rank = np.argsort(-dets_j[:, 0])
                dets_j = dets_j[cls_rank]

                cls_boxes[j] = _diou_nms_for_cls(dets_j, thres=nms_threshold)
                cls_ids[j] = np.array([j] * cls_boxes[j].shape[0]).reshape(-1,
                                                                           1)

            cls_boxes = np.vstack(cls_boxes[start_idx:])
            cls_ids = np.vstack(cls_ids[start_idx:])
            pred_result = np.hstack([cls_ids, cls_boxes])

            # Limit to max_per_image detections **over all classes**
            image_scores = cls_boxes[:, 0]
            if len(image_scores) > keep_top_k:
                image_thresh = np.sort(image_scores)[-keep_top_k]
                keep = np.where(cls_boxes[:, 0] >= image_thresh)[0]
                pred_result = pred_result[keep, :]

            res = fluid.LoDTensor()
            res.set_lod([[0, pred_result.shape[0]]])
            if pred_result.shape[0] == 0:
                pred_result = np.array([[1]], dtype=np.float32)
            res.set(pred_result, fluid.CPUPlace())

            return res

        pred_result = create_tmp_var(
            fluid.default_main_program(),
            name='diou_nms_pred_result',
            dtype='float32',
            shape=[6],
            lod_level=1)
        fluid.layers.py_func(
            func=_diou_nms, x=[bboxes, scores], out=pred_result)
        return pred_result


753 754 755 756
@register
class BBoxAssigner(object):
    __op__ = fluid.layers.generate_proposal_labels
    __append_doc__ = True
757
    __shared__ = ['num_classes']
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
                 fg_thresh=.5,
                 bg_thresh_hi=.5,
                 bg_thresh_lo=0.,
                 bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                 num_classes=81,
                 shuffle_before_sample=True):
        super(BBoxAssigner, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh_hi = bg_thresh_hi
        self.bg_thresh_lo = bg_thresh_lo
        self.bbox_reg_weights = bbox_reg_weights
        self.class_nums = num_classes
        self.use_random = shuffle_before_sample


littletomatodonkey's avatar
littletomatodonkey 已提交
779 780
@register
class LibraBBoxAssigner(object):
781 782
    __shared__ = ['num_classes']

littletomatodonkey's avatar
littletomatodonkey 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
                 fg_thresh=.5,
                 bg_thresh_hi=.5,
                 bg_thresh_lo=0.,
                 bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                 num_classes=81,
                 shuffle_before_sample=True,
                 is_cls_agnostic=False,
                 num_bins=3):
        super(LibraBBoxAssigner, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh_hi = bg_thresh_hi
        self.bg_thresh_lo = bg_thresh_lo
        self.bbox_reg_weights = bbox_reg_weights
        self.class_nums = num_classes
        self.use_random = shuffle_before_sample
        self.is_cls_agnostic = is_cls_agnostic
        self.num_bins = num_bins

    def __call__(
            self,
            rpn_rois,
            gt_classes,
            is_crowd,
            gt_boxes,
            im_info, ):
        return self.generate_proposal_label_libra(
            rpn_rois=rpn_rois,
            gt_classes=gt_classes,
            is_crowd=is_crowd,
            gt_boxes=gt_boxes,
            im_info=im_info,
            batch_size_per_im=self.batch_size_per_im,
            fg_fraction=self.fg_fraction,
            fg_thresh=self.fg_thresh,
            bg_thresh_hi=self.bg_thresh_hi,
            bg_thresh_lo=self.bg_thresh_lo,
            bbox_reg_weights=self.bbox_reg_weights,
            class_nums=self.class_nums,
            use_random=self.use_random,
            is_cls_agnostic=self.is_cls_agnostic,
            is_cascade_rcnn=False)

    def generate_proposal_label_libra(
            self, rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
            batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi,
            bg_thresh_lo, bbox_reg_weights, class_nums, use_random,
            is_cls_agnostic, is_cascade_rcnn):
        num_bins = self.num_bins

        def create_tmp_var(program, name, dtype, shape, lod_level=None):
            return program.current_block().create_var(
                name=name, dtype=dtype, shape=shape, lod_level=lod_level)

        def _sample_pos(max_overlaps, max_classes, pos_inds, num_expected):
            if len(pos_inds) <= num_expected:
                return pos_inds
            else:
                unique_gt_inds = np.unique(max_classes[pos_inds])
                num_gts = len(unique_gt_inds)
                num_per_gt = int(round(num_expected / float(num_gts)) + 1)

                sampled_inds = []
                for i in unique_gt_inds:
                    inds = np.nonzero(max_classes == i)[0]
                    before_len = len(inds)
                    inds = list(set(inds) & set(pos_inds))
                    after_len = len(inds)
                    if len(inds) > num_per_gt:
                        inds = np.random.choice(
                            inds, size=num_per_gt, replace=False)
                    sampled_inds.extend(list(inds))  # combine as a new sampler
                if len(sampled_inds) < num_expected:
                    num_extra = num_expected - len(sampled_inds)
                    extra_inds = np.array(
                        list(set(pos_inds) - set(sampled_inds)))
                    assert len(sampled_inds)+len(extra_inds) == len(pos_inds), \
                        "sum of sampled_inds({}) and extra_inds({}) length must be equal with pos_inds({})!".format(
                            len(sampled_inds), len(extra_inds), len(pos_inds))
                    if len(extra_inds) > num_extra:
                        extra_inds = np.random.choice(
                            extra_inds, size=num_extra, replace=False)
                    sampled_inds.extend(extra_inds.tolist())
                elif len(sampled_inds) > num_expected:
                    sampled_inds = np.random.choice(
                        sampled_inds, size=num_expected, replace=False)
                return sampled_inds

        def sample_via_interval(max_overlaps, full_set, num_expected, floor_thr,
                                num_bins, bg_thresh_hi):
            max_iou = max_overlaps.max()
            iou_interval = (max_iou - floor_thr) / num_bins
            per_num_expected = int(num_expected / num_bins)

            sampled_inds = []
            for i in range(num_bins):
                start_iou = floor_thr + i * iou_interval
                end_iou = floor_thr + (i + 1) * iou_interval

                tmp_set = set(
                    np.where(
                        np.logical_and(max_overlaps >= start_iou, max_overlaps <
                                       end_iou))[0])
                tmp_inds = list(tmp_set & full_set)

                if len(tmp_inds) > per_num_expected:
                    tmp_sampled_set = np.random.choice(
                        tmp_inds, size=per_num_expected, replace=False)
                else:
                    tmp_sampled_set = np.array(tmp_inds, dtype=np.int)
                sampled_inds.append(tmp_sampled_set)

            sampled_inds = np.concatenate(sampled_inds)
            if len(sampled_inds) < num_expected:
                num_extra = num_expected - len(sampled_inds)
                extra_inds = np.array(list(full_set - set(sampled_inds)))
                assert len(sampled_inds)+len(extra_inds) == len(full_set), \
                    "sum of sampled_inds({}) and extra_inds({}) length must be equal with full_set({})!".format(
                            len(sampled_inds), len(extra_inds), len(full_set))

                if len(extra_inds) > num_extra:
                    extra_inds = np.random.choice(
                        extra_inds, num_extra, replace=False)
                sampled_inds = np.concatenate([sampled_inds, extra_inds])

            return sampled_inds

        def _sample_neg(max_overlaps,
                        max_classes,
                        neg_inds,
                        num_expected,
                        floor_thr=-1,
                        floor_fraction=0,
                        num_bins=3,
                        bg_thresh_hi=0.5):
            if len(neg_inds) <= num_expected:
                return neg_inds
            else:
                # balance sampling for negative samples
                neg_set = set(neg_inds)
                if floor_thr > 0:
                    floor_set = set(
                        np.where(
                            np.logical_and(max_overlaps >= 0, max_overlaps <
                                           floor_thr))[0])
                    iou_sampling_set = set(
                        np.where(max_overlaps >= floor_thr)[0])
                elif floor_thr == 0:
                    floor_set = set(np.where(max_overlaps == 0)[0])
                    iou_sampling_set = set(
                        np.where(max_overlaps > floor_thr)[0])
                else:
                    floor_set = set()
                    iou_sampling_set = set(
                        np.where(max_overlaps > floor_thr)[0])
                    floor_thr = 0

                floor_neg_inds = list(floor_set & neg_set)
                iou_sampling_neg_inds = list(iou_sampling_set & neg_set)

                num_expected_iou_sampling = int(num_expected *
                                                (1 - floor_fraction))
                if len(iou_sampling_neg_inds) > num_expected_iou_sampling:
                    if num_bins >= 2:
                        iou_sampled_inds = sample_via_interval(
                            max_overlaps,
                            set(iou_sampling_neg_inds),
                            num_expected_iou_sampling, floor_thr, num_bins,
                            bg_thresh_hi)
                    else:
                        iou_sampled_inds = np.random.choice(
                            iou_sampling_neg_inds,
                            size=num_expected_iou_sampling,
                            replace=False)
                else:
                    iou_sampled_inds = np.array(
                        iou_sampling_neg_inds, dtype=np.int)
                num_expected_floor = num_expected - len(iou_sampled_inds)
                if len(floor_neg_inds) > num_expected_floor:
                    sampled_floor_inds = np.random.choice(
                        floor_neg_inds, size=num_expected_floor, replace=False)
                else:
                    sampled_floor_inds = np.array(floor_neg_inds, dtype=np.int)
                sampled_inds = np.concatenate(
                    (sampled_floor_inds, iou_sampled_inds))
                if len(sampled_inds) < num_expected:
                    num_extra = num_expected - len(sampled_inds)
                    extra_inds = np.array(list(neg_set - set(sampled_inds)))
                    if len(extra_inds) > num_extra:
                        extra_inds = np.random.choice(
                            extra_inds, size=num_extra, replace=False)
                    sampled_inds = np.concatenate((sampled_inds, extra_inds))
                return sampled_inds

        def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                         batch_size_per_im, fg_fraction, fg_thresh,
                         bg_thresh_hi, bg_thresh_lo, bbox_reg_weights,
                         class_nums, use_random, is_cls_agnostic,
                         is_cascade_rcnn):
            rois_per_image = int(batch_size_per_im)
            fg_rois_per_im = int(np.round(fg_fraction * rois_per_image))

            # Roidb
            im_scale = im_info[2]
            inv_im_scale = 1. / im_scale
            rpn_rois = rpn_rois * inv_im_scale
            if is_cascade_rcnn:
                rpn_rois = rpn_rois[gt_boxes.shape[0]:, :]
            boxes = np.vstack([gt_boxes, rpn_rois])
            gt_overlaps = np.zeros((boxes.shape[0], class_nums))
            box_to_gt_ind_map = np.zeros((boxes.shape[0]), dtype=np.int32)
            if len(gt_boxes) > 0:
                proposal_to_gt_overlaps = bbox_overlaps(boxes, gt_boxes)

                overlaps_argmax = proposal_to_gt_overlaps.argmax(axis=1)
                overlaps_max = proposal_to_gt_overlaps.max(axis=1)
                # Boxes which with non-zero overlap with gt boxes
                overlapped_boxes_ind = np.where(overlaps_max > 0)[0]

                overlapped_boxes_gt_classes = gt_classes[overlaps_argmax[
                    overlapped_boxes_ind]]

                for idx in range(len(overlapped_boxes_ind)):
                    gt_overlaps[overlapped_boxes_ind[
                        idx], overlapped_boxes_gt_classes[idx]] = overlaps_max[
                            overlapped_boxes_ind[idx]]
                    box_to_gt_ind_map[overlapped_boxes_ind[
                        idx]] = overlaps_argmax[overlapped_boxes_ind[idx]]

            crowd_ind = np.where(is_crowd)[0]
            gt_overlaps[crowd_ind] = -1

            max_overlaps = gt_overlaps.max(axis=1)
            max_classes = gt_overlaps.argmax(axis=1)

            # Cascade RCNN Decode Filter
            if is_cascade_rcnn:
                ws = boxes[:, 2] - boxes[:, 0] + 1
                hs = boxes[:, 3] - boxes[:, 1] + 1
                keep = np.where((ws > 0) & (hs > 0))[0]
                boxes = boxes[keep]
1028
                max_overlaps = max_overlaps[keep]
littletomatodonkey's avatar
littletomatodonkey 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
                fg_inds = np.where(max_overlaps >= fg_thresh)[0]
                bg_inds = np.where((max_overlaps < bg_thresh_hi) & (
                    max_overlaps >= bg_thresh_lo))[0]
                fg_rois_per_this_image = fg_inds.shape[0]
                bg_rois_per_this_image = bg_inds.shape[0]
            else:
                # Foreground
                fg_inds = np.where(max_overlaps >= fg_thresh)[0]
                fg_rois_per_this_image = np.minimum(fg_rois_per_im,
                                                    fg_inds.shape[0])
                # Sample foreground if there are too many
                if fg_inds.shape[0] > fg_rois_per_this_image:
                    if use_random:
                        fg_inds = _sample_pos(max_overlaps, max_classes,
                                              fg_inds, fg_rois_per_this_image)
                fg_inds = fg_inds[:fg_rois_per_this_image]

                # Background
                bg_inds = np.where((max_overlaps < bg_thresh_hi) & (
                    max_overlaps >= bg_thresh_lo))[0]
                bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
                bg_rois_per_this_image = np.minimum(bg_rois_per_this_image,
                                                    bg_inds.shape[0])
                assert bg_rois_per_this_image >= 0, "bg_rois_per_this_image must be >= 0 but got {}".format(
                    bg_rois_per_this_image)

                # Sample background if there are too many
                if bg_inds.shape[0] > bg_rois_per_this_image:
                    if use_random:
                        # libra neg sample
                        bg_inds = _sample_neg(
                            max_overlaps,
                            max_classes,
                            bg_inds,
                            bg_rois_per_this_image,
                            num_bins=num_bins,
                            bg_thresh_hi=bg_thresh_hi)
                bg_inds = bg_inds[:bg_rois_per_this_image]

            keep_inds = np.append(fg_inds, bg_inds)
            sampled_labels = max_classes[keep_inds]  # N x 1
            sampled_labels[fg_rois_per_this_image:] = 0
            sampled_boxes = boxes[keep_inds]  # N x 324
            sampled_gts = gt_boxes[box_to_gt_ind_map[keep_inds]]
            sampled_gts[fg_rois_per_this_image:, :] = gt_boxes[0]
            bbox_label_targets = _compute_targets(
                sampled_boxes, sampled_gts, sampled_labels, bbox_reg_weights)
            bbox_targets, bbox_inside_weights = _expand_bbox_targets(
                bbox_label_targets, class_nums, is_cls_agnostic)
            bbox_outside_weights = np.array(
                bbox_inside_weights > 0, dtype=bbox_inside_weights.dtype)
            # Scale rois
            sampled_rois = sampled_boxes * im_scale

            # Faster RCNN blobs
            frcn_blobs = dict(
                rois=sampled_rois,
                labels_int32=sampled_labels,
                bbox_targets=bbox_targets,
                bbox_inside_weights=bbox_inside_weights,
                bbox_outside_weights=bbox_outside_weights)
            return frcn_blobs

        def _compute_targets(roi_boxes, gt_boxes, labels, bbox_reg_weights):
            assert roi_boxes.shape[0] == gt_boxes.shape[0]
            assert roi_boxes.shape[1] == 4
            assert gt_boxes.shape[1] == 4

            targets = np.zeros(roi_boxes.shape)
            bbox_reg_weights = np.asarray(bbox_reg_weights)
            targets = box_to_delta(
                ex_boxes=roi_boxes, gt_boxes=gt_boxes, weights=bbox_reg_weights)

            return np.hstack([labels[:, np.newaxis], targets]).astype(
                np.float32, copy=False)

        def _expand_bbox_targets(bbox_targets_input, class_nums,
                                 is_cls_agnostic):
            class_labels = bbox_targets_input[:, 0]
            fg_inds = np.where(class_labels > 0)[0]
            bbox_targets = np.zeros((class_labels.shape[0], 4 * class_nums
                                     if not is_cls_agnostic else 4 * 2))
            bbox_inside_weights = np.zeros(bbox_targets.shape)
            for ind in fg_inds:
                class_label = int(class_labels[
                    ind]) if not is_cls_agnostic else 1
                start_ind = class_label * 4
                end_ind = class_label * 4 + 4
                bbox_targets[ind, start_ind:end_ind] = bbox_targets_input[ind,
                                                                          1:]
                bbox_inside_weights[ind, start_ind:end_ind] = (1.0, 1.0, 1.0,
                                                               1.0)
            return bbox_targets, bbox_inside_weights

        def generate_func(
                rpn_rois,
                gt_classes,
                is_crowd,
                gt_boxes,
                im_info, ):
            rpn_rois_lod = rpn_rois.lod()[0]
            gt_classes_lod = gt_classes.lod()[0]

            # convert
            rpn_rois = np.array(rpn_rois)
            gt_classes = np.array(gt_classes)
            is_crowd = np.array(is_crowd)
            gt_boxes = np.array(gt_boxes)
            im_info = np.array(im_info)

            rois = []
            labels_int32 = []
            bbox_targets = []
            bbox_inside_weights = []
            bbox_outside_weights = []
            lod = [0]

            for idx in range(len(rpn_rois_lod) - 1):
                rois_si = rpn_rois_lod[idx]
                rois_ei = rpn_rois_lod[idx + 1]

                gt_si = gt_classes_lod[idx]
                gt_ei = gt_classes_lod[idx + 1]
                frcn_blobs = _sample_rois(
                    rpn_rois[rois_si:rois_ei], gt_classes[gt_si:gt_ei],
                    is_crowd[gt_si:gt_ei], gt_boxes[gt_si:gt_ei], im_info[idx],
                    batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi,
                    bg_thresh_lo, bbox_reg_weights, class_nums, use_random,
                    is_cls_agnostic, is_cascade_rcnn)
                lod.append(frcn_blobs['rois'].shape[0] + lod[-1])
                rois.append(frcn_blobs['rois'])
                labels_int32.append(frcn_blobs['labels_int32'].reshape(-1, 1))
                bbox_targets.append(frcn_blobs['bbox_targets'])
                bbox_inside_weights.append(frcn_blobs['bbox_inside_weights'])
                bbox_outside_weights.append(frcn_blobs['bbox_outside_weights'])

            rois = np.vstack(rois)
            labels_int32 = np.vstack(labels_int32)
            bbox_targets = np.vstack(bbox_targets)
            bbox_inside_weights = np.vstack(bbox_inside_weights)
            bbox_outside_weights = np.vstack(bbox_outside_weights)

            # create lod-tensor for return
            # notice that the func create_lod_tensor does not work well here
            ret_rois = fluid.LoDTensor()
            ret_rois.set_lod([lod])
            ret_rois.set(rois.astype("float32"), fluid.CPUPlace())

            ret_labels_int32 = fluid.LoDTensor()
            ret_labels_int32.set_lod([lod])
            ret_labels_int32.set(labels_int32.astype("int32"), fluid.CPUPlace())

            ret_bbox_targets = fluid.LoDTensor()
            ret_bbox_targets.set_lod([lod])
            ret_bbox_targets.set(
                bbox_targets.astype("float32"), fluid.CPUPlace())

            ret_bbox_inside_weights = fluid.LoDTensor()
            ret_bbox_inside_weights.set_lod([lod])
            ret_bbox_inside_weights.set(
                bbox_inside_weights.astype("float32"), fluid.CPUPlace())

            ret_bbox_outside_weights = fluid.LoDTensor()
            ret_bbox_outside_weights.set_lod([lod])
            ret_bbox_outside_weights.set(
                bbox_outside_weights.astype("float32"), fluid.CPUPlace())

            return ret_rois, ret_labels_int32, ret_bbox_targets, ret_bbox_inside_weights, ret_bbox_outside_weights

        rois = create_tmp_var(
            fluid.default_main_program(),
            name=None,  #'rois', 
            dtype='float32',
            shape=[-1, 4], )
        bbox_inside_weights = create_tmp_var(
            fluid.default_main_program(),
            name=None,  #'bbox_inside_weights', 
            dtype='float32',
            shape=[-1, 8 if self.is_cls_agnostic else self.class_nums * 4], )
        bbox_outside_weights = create_tmp_var(
            fluid.default_main_program(),
            name=None,  #'bbox_outside_weights', 
            dtype='float32',
            shape=[-1, 8 if self.is_cls_agnostic else self.class_nums * 4], )
        bbox_targets = create_tmp_var(
            fluid.default_main_program(),
            name=None,  #'bbox_targets', 
            dtype='float32',
            shape=[-1, 8 if self.is_cls_agnostic else self.class_nums * 4], )
        labels_int32 = create_tmp_var(
            fluid.default_main_program(),
            name=None,  #'labels_int32', 
            dtype='int32',
            shape=[-1, 1], )

        outs = [
            rois, labels_int32, bbox_targets, bbox_inside_weights,
            bbox_outside_weights
        ]

        fluid.layers.py_func(
            func=generate_func,
            x=[rpn_rois, gt_classes, is_crowd, gt_boxes, im_info],
            out=outs)
        return outs


1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
@register
class RoIAlign(object):
    __op__ = fluid.layers.roi_align
    __append_doc__ = True

    def __init__(self, resolution=7, spatial_scale=1. / 16, sampling_ratio=0):
        super(RoIAlign, self).__init__()
        if isinstance(resolution, Integral):
            resolution = [resolution, resolution]
        self.pooled_height = resolution[0]
        self.pooled_width = resolution[1]
        self.spatial_scale = spatial_scale
        self.sampling_ratio = sampling_ratio


@register
class RoIPool(object):
    __op__ = fluid.layers.roi_pool
    __append_doc__ = True

    def __init__(self, resolution=7, spatial_scale=1. / 16):
        super(RoIPool, self).__init__()
        if isinstance(resolution, Integral):
            resolution = [resolution, resolution]
        self.pooled_height = resolution[0]
        self.pooled_width = resolution[1]
        self.spatial_scale = spatial_scale


@register
class MultiBoxHead(object):
    __op__ = fluid.layers.multi_box_head
    __append_doc__ = True

    def __init__(self,
                 min_ratio=20,
                 max_ratio=90,
1273
                 base_size=300,
1274 1275 1276 1277
                 min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
                 max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
                 aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.],
                                [2., 3.]],
1278
                 steps=None,
1279
                 offset=0.5,
1280 1281 1282 1283
                 flip=True,
                 min_max_aspect_ratios_order=False,
                 kernel_size=1,
                 pad=0):
1284 1285 1286
        super(MultiBoxHead, self).__init__()
        self.min_ratio = min_ratio
        self.max_ratio = max_ratio
1287
        self.base_size = base_size
1288 1289 1290
        self.min_sizes = min_sizes
        self.max_sizes = max_sizes
        self.aspect_ratios = aspect_ratios
1291
        self.steps = steps
1292 1293
        self.offset = offset
        self.flip = flip
1294 1295 1296
        self.min_max_aspect_ratios_order = min_max_aspect_ratios_order
        self.kernel_size = kernel_size
        self.pad = pad
1297 1298


G
Guanghua Yu 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
@register
@serializable
class SSDLiteMultiBoxHead(object):
    def __init__(self,
                 min_ratio=20,
                 max_ratio=90,
                 base_size=300,
                 min_sizes=None,
                 max_sizes=None,
                 aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.],
                                [2., 3.]],
                 steps=None,
                 offset=0.5,
                 flip=True,
                 clip=False,
                 pad=0,
                 conv_decay=0.0):
        super(SSDLiteMultiBoxHead, self).__init__()
        self.min_ratio = min_ratio
        self.max_ratio = max_ratio
        self.base_size = base_size
        self.min_sizes = min_sizes
        self.max_sizes = max_sizes
        self.aspect_ratios = aspect_ratios
        self.steps = steps
        self.offset = offset
        self.flip = flip
        self.pad = pad
        self.clip = clip
        self.conv_decay = conv_decay

    def _separable_conv(self, input, num_filters, name):
        dwconv_param_attr = ParamAttr(
            name=name + 'dw_weights', regularizer=L2Decay(self.conv_decay))
        num_filter1 = input.shape[1]
        depthwise_conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filter1,
            filter_size=3,
            stride=1,
            padding="SAME",
            groups=int(num_filter1),
            act=None,
            use_cudnn=False,
            param_attr=dwconv_param_attr,
            bias_attr=False)
        bn_name = name + '_bn'
        bn_param_attr = ParamAttr(
            name=bn_name + "_scale", regularizer=L2Decay(0.0))
        bn_bias_attr = ParamAttr(
            name=bn_name + "_offset", regularizer=L2Decay(0.0))
        bn = fluid.layers.batch_norm(
            input=depthwise_conv,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        bn = fluid.layers.relu6(bn)
        pwconv_param_attr = ParamAttr(
            name=name + 'pw_weights', regularizer=L2Decay(self.conv_decay))
        pointwise_conv = fluid.layers.conv2d(
            input=bn,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            act=None,
            use_cudnn=True,
            param_attr=pwconv_param_attr,
            bias_attr=False)
        return pointwise_conv

    def __call__(self, inputs, image, num_classes):
        def _permute_and_reshape(input, last_dim):
            trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1])
            compile_shape = [0, -1, last_dim]
            return fluid.layers.reshape(trans, shape=compile_shape)

        def _is_list_or_tuple_(data):
            return (isinstance(data, list) or isinstance(data, tuple))

        if self.min_sizes is None and self.max_sizes is None:
            num_layer = len(inputs)
            self.min_sizes = []
            self.max_sizes = []
            step = int(
                math.floor(((self.max_ratio - self.min_ratio)) / (num_layer - 2
                                                                  )))
            for ratio in six.moves.range(self.min_ratio, self.max_ratio + 1,
                                         step):
                self.min_sizes.append(self.base_size * ratio / 100.)
                self.max_sizes.append(self.base_size * (ratio + step) / 100.)
            self.min_sizes = [self.base_size * .10] + self.min_sizes
            self.max_sizes = [self.base_size * .20] + self.max_sizes

        locs, confs = [], []
        boxes, mvars = [], []

        for i, input in enumerate(inputs):
            min_size = self.min_sizes[i]
            max_size = self.max_sizes[i]
            if not _is_list_or_tuple_(min_size):
                min_size = [min_size]
            if not _is_list_or_tuple_(max_size):
                max_size = [max_size]
            step = [
                self.steps[i] if self.steps else 0.0, self.steps[i]
                if self.steps else 0.0
            ]
            box, var = fluid.layers.prior_box(
                input,
                image,
                min_sizes=min_size,
                max_sizes=max_size,
                steps=step,
                aspect_ratios=self.aspect_ratios[i],
                variance=[0.1, 0.1, 0.2, 0.2],
                clip=self.clip,
                flip=self.flip,
                offset=0.5)

            num_boxes = box.shape[2]
            box = fluid.layers.reshape(box, shape=[-1, 4])
            var = fluid.layers.reshape(var, shape=[-1, 4])
            num_loc_output = num_boxes * 4
            num_conf_output = num_boxes * num_classes
            # get loc
            mbox_loc = self._separable_conv(input, num_loc_output,
                                            "loc_{}".format(i + 1))
            loc = _permute_and_reshape(mbox_loc, 4)
            # get conf
            mbox_conf = self._separable_conv(input, num_conf_output,
                                             "conf_{}".format(i + 1))
            conf = _permute_and_reshape(mbox_conf, num_classes)

            locs.append(loc)
            confs.append(conf)
            boxes.append(box)
            mvars.append(var)

        ssd_mbox_loc = fluid.layers.concat(locs, axis=1)
        ssd_mbox_conf = fluid.layers.concat(confs, axis=1)
        prior_boxes = fluid.layers.concat(boxes)
        box_vars = fluid.layers.concat(mvars)

        prior_boxes.stop_gradient = True
        box_vars.stop_gradient = True
        return ssd_mbox_loc, ssd_mbox_conf, prior_boxes, box_vars


1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
@register
@serializable
class SSDOutputDecoder(object):
    __op__ = fluid.layers.detection_output
    __append_doc__ = True

    def __init__(self,
                 nms_threshold=0.45,
                 nms_top_k=400,
                 keep_top_k=200,
                 score_threshold=0.01,
                 nms_eta=1.0,
                 background_label=0):
        super(SSDOutputDecoder, self).__init__()
        self.nms_threshold = nms_threshold
        self.background_label = background_label
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.score_threshold = score_threshold
        self.nms_eta = nms_eta


@register
@serializable
class RetinaTargetAssign(object):
    __op__ = fluid.layers.retinanet_target_assign
    __append_doc__ = True

    def __init__(self, positive_overlap=0.5, negative_overlap=0.4):
        super(RetinaTargetAssign, self).__init__()
        self.positive_overlap = positive_overlap
        self.negative_overlap = negative_overlap


@register
@serializable
class RetinaOutputDecoder(object):
    __op__ = fluid.layers.retinanet_detection_output
    __append_doc__ = True

    def __init__(self,
                 score_thresh=0.05,
                 nms_thresh=0.3,
                 pre_nms_top_n=1000,
                 detections_per_im=100,
                 nms_eta=1.0):
        super(RetinaOutputDecoder, self).__init__()
        self.score_threshold = score_thresh
        self.nms_threshold = nms_thresh
        self.nms_top_k = pre_nms_top_n
        self.keep_top_k = detections_per_im
        self.nms_eta = nms_eta