ops.py 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16 17 18
from numbers import Integral

from paddle import fluid
Y
Yuan Gao 已提交
19 20
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
21 22 23 24 25
from ppdet.core.workspace import register, serializable

__all__ = [
    'AnchorGenerator', 'RPNTargetAssign', 'GenerateProposals', 'MultiClassNMS',
    'BBoxAssigner', 'MaskAssigner', 'RoIAlign', 'RoIPool', 'MultiBoxHead',
26 27
    'SSDOutputDecoder', 'RetinaTargetAssign', 'RetinaOutputDecoder', 'ConvNorm',
    'MultiClassSoftNMS'
28 29 30
]


Y
Yuan Gao 已提交
31 32 33 34 35 36 37
def ConvNorm(input,
             num_filters,
             filter_size,
             stride=1,
             groups=1,
             norm_decay=0.,
             norm_type='affine_channel',
Y
Yuan Gao 已提交
38 39
             norm_groups=32,
             dilation=1,
40
             lr_scale=1,
Y
Yuan Gao 已提交
41 42
             freeze_norm=False,
             act=None,
Y
Yuan Gao 已提交
43
             norm_name=None,
Y
Yuan Gao 已提交
44 45 46 47 48 49 50 51
             initializer=None,
             name=None):
    fan = num_filters
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
Y
Yuan Gao 已提交
52 53
        padding=((filter_size - 1) // 2) * dilation,
        dilation=dilation,
Y
Yuan Gao 已提交
54 55 56
        groups=groups,
        act=None,
        param_attr=ParamAttr(
57 58 59
            name=name + "_weights",
            initializer=initializer,
            learning_rate=lr_scale),
Y
Yuan Gao 已提交
60 61 62 63 64
        bias_attr=False,
        name=name + '.conv2d.output.1')

    norm_lr = 0. if freeze_norm else 1.
    pattr = ParamAttr(
Y
Yuan Gao 已提交
65
        name=norm_name + '_scale',
66
        learning_rate=norm_lr * lr_scale,
Y
Yuan Gao 已提交
67 68
        regularizer=L2Decay(norm_decay))
    battr = ParamAttr(
Y
Yuan Gao 已提交
69
        name=norm_name + '_offset',
70
        learning_rate=norm_lr * lr_scale,
Y
Yuan Gao 已提交
71 72 73 74 75 76 77
        regularizer=L2Decay(norm_decay))

    if norm_type in ['bn', 'sync_bn']:
        global_stats = True if freeze_norm else False
        out = fluid.layers.batch_norm(
            input=conv,
            act=act,
Y
Yuan Gao 已提交
78
            name=norm_name + '.output.1',
Y
Yuan Gao 已提交
79 80
            param_attr=pattr,
            bias_attr=battr,
Y
Yuan Gao 已提交
81 82
            moving_mean_name=norm_name + '_mean',
            moving_variance_name=norm_name + '_variance',
Y
Yuan Gao 已提交
83 84 85
            use_global_stats=global_stats)
        scale = fluid.framework._get_var(pattr.name)
        bias = fluid.framework._get_var(battr.name)
Y
Yuan Gao 已提交
86 87 88 89 90 91 92 93 94 95
    elif norm_type == 'gn':
        out = fluid.layers.group_norm(
            input=conv,
            act=act,
            name=norm_name + '.output.1',
            groups=norm_groups,
            param_attr=pattr,
            bias_attr=battr)
        scale = fluid.framework._get_var(pattr.name)
        bias = fluid.framework._get_var(battr.name)
Y
Yuan Gao 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    elif norm_type == 'affine_channel':
        scale = fluid.layers.create_parameter(
            shape=[conv.shape[1]],
            dtype=conv.dtype,
            attr=pattr,
            default_initializer=fluid.initializer.Constant(1.))
        bias = fluid.layers.create_parameter(
            shape=[conv.shape[1]],
            dtype=conv.dtype,
            attr=battr,
            default_initializer=fluid.initializer.Constant(0.))
        out = fluid.layers.affine_channel(
            x=conv, scale=scale, bias=bias, act=act)
    if freeze_norm:
        scale.stop_gradient = True
        bias.stop_gradient = True
    return out


115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
@register
@serializable
class AnchorGenerator(object):
    __op__ = fluid.layers.anchor_generator
    __append_doc__ = True

    def __init__(self,
                 stride=[16.0, 16.0],
                 anchor_sizes=[32, 64, 128, 256, 512],
                 aspect_ratios=[0.5, 1., 2.],
                 variance=[1., 1., 1., 1.]):
        super(AnchorGenerator, self).__init__()
        self.anchor_sizes = anchor_sizes
        self.aspect_ratios = aspect_ratios
        self.variance = variance
        self.stride = stride


@register
@serializable
class RPNTargetAssign(object):
    __op__ = fluid.layers.rpn_target_assign
    __append_doc__ = True

    def __init__(self,
                 rpn_batch_size_per_im=256,
                 rpn_straddle_thresh=0.,
                 rpn_fg_fraction=0.5,
                 rpn_positive_overlap=0.7,
                 rpn_negative_overlap=0.3,
                 use_random=True):
        super(RPNTargetAssign, self).__init__()
        self.rpn_batch_size_per_im = rpn_batch_size_per_im
        self.rpn_straddle_thresh = rpn_straddle_thresh
        self.rpn_fg_fraction = rpn_fg_fraction
        self.rpn_positive_overlap = rpn_positive_overlap
        self.rpn_negative_overlap = rpn_negative_overlap
        self.use_random = use_random


@register
@serializable
class GenerateProposals(object):
    __op__ = fluid.layers.generate_proposals
    __append_doc__ = True

    def __init__(self,
                 pre_nms_top_n=6000,
                 post_nms_top_n=1000,
                 nms_thresh=.5,
                 min_size=.1,
                 eta=1.):
        super(GenerateProposals, self).__init__()
        self.pre_nms_top_n = pre_nms_top_n
        self.post_nms_top_n = post_nms_top_n
        self.nms_thresh = nms_thresh
        self.min_size = min_size
        self.eta = eta


@register
class MaskAssigner(object):
    __op__ = fluid.layers.generate_mask_labels
    __append_doc__ = True
179
    __shared__ = ['num_classes']
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    def __init__(self, num_classes=81, resolution=14):
        super(MaskAssigner, self).__init__()
        self.num_classes = num_classes
        self.resolution = resolution


@register
@serializable
class MultiClassNMS(object):
    __op__ = fluid.layers.multiclass_nms
    __append_doc__ = True

    def __init__(self,
                 score_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 nms_threshold=.5,
                 normalized=False,
                 nms_eta=1.0,
                 background_label=0):
        super(MultiClassNMS, self).__init__()
        self.score_threshold = score_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.nms_threshold = nms_threshold
        self.normalized = normalized
        self.nms_eta = nms_eta
        self.background_label = background_label

210

211 212 213
@register
@serializable
class MultiClassSoftNMS(object):
214 215 216 217 218 219 220
    def __init__(
            self,
            score_threshold=0.01,
            keep_top_k=300,
            softnms_sigma=0.5,
            normalized=False,
            background_label=0, ):
221 222 223 224 225 226
        super(MultiClassSoftNMS, self).__init__()
        self.score_threshold = score_threshold
        self.keep_top_k = keep_top_k
        self.softnms_sigma = softnms_sigma
        self.normalized = normalized
        self.background_label = background_label
227 228

    def __call__(self, bboxes, scores):
229
        def create_tmp_var(program, name, dtype, shape, lod_leval):
230 231 232
            return program.current_block().create_var(
                name=name, dtype=dtype, shape=shape, lod_leval=lod_leval)

233 234 235 236 237 238 239 240
        def _soft_nms_for_cls(dets, sigma, thres):
            """soft_nms_for_cls"""
            dets_final = []
            while len(dets) > 0:
                maxpos = np.argmax(dets[:, 0])
                dets_final.append(dets[maxpos].copy())
                ts, tx1, ty1, tx2, ty2 = dets[maxpos]
                scores = dets[:, 0]
241 242
                # force remove bbox at maxpos
                scores[maxpos] = -1
243 244 245 246 247 248 249 250 251 252 253 254 255
                x1 = dets[:, 1]
                y1 = dets[:, 2]
                x2 = dets[:, 3]
                y2 = dets[:, 4]
                eta = 0 if self.normalized else 1
                areas = (x2 - x1 + eta) * (y2 - y1 + eta)
                xx1 = np.maximum(tx1, x1)
                yy1 = np.maximum(ty1, y1)
                xx2 = np.minimum(tx2, x2)
                yy2 = np.minimum(ty2, y2)
                w = np.maximum(0.0, xx2 - xx1 + eta)
                h = np.maximum(0.0, yy2 - yy1 + eta)
                inter = w * h
256
                ovr = inter / (areas + areas[maxpos] - inter)
257 258 259 260 261 262
                weight = np.exp(-(ovr * ovr) / sigma)
                scores = scores * weight
                idx_keep = np.where(scores >= thres)
                dets[:, 0] = scores
                dets = dets[idx_keep]
            dets_final = np.array(dets_final).reshape(-1, 5)
263
            return dets_final
264 265 266 267 268

        def _soft_nms(bboxes, scores):
            bboxes = np.array(bboxes)
            scores = np.array(scores)
            class_nums = scores.shape[-1]
269

270 271 272
            softnms_thres = self.score_threshold
            softnms_sigma = self.softnms_sigma
            keep_top_k = self.keep_top_k
273

274 275
            cls_boxes = [[] for _ in range(class_nums)]
            cls_ids = [[] for _ in range(class_nums)]
276

277 278 279 280 281
            start_idx = 1 if self.background_label == 0 else 0
            for j in range(start_idx, class_nums):
                inds = np.where(scores[:, j] >= softnms_thres)[0]
                scores_j = scores[inds, j]
                rois_j = bboxes[inds, j, :]
282 283
                dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype(
                    np.float32, copy=False)
284 285 286
                cls_rank = np.argsort(-dets_j[:, 0])
                dets_j = dets_j[cls_rank]

287 288 289 290 291
                cls_boxes[j] = _soft_nms_for_cls(
                    dets_j, sigma=softnms_sigma, thres=softnms_thres)
                cls_ids[j] = np.array([j] * cls_boxes[j].shape[0]).reshape(-1,
                                                                           1)

292 293
            cls_boxes = np.vstack(cls_boxes[start_idx:])
            cls_ids = np.vstack(cls_ids[start_idx:])
294
            pred_result = np.hstack([cls_ids, cls_boxes])
295 296

            # Limit to max_per_image detections **over all classes**
297
            image_scores = cls_boxes[:, 0]
298 299 300 301
            if len(image_scores) > keep_top_k:
                image_thresh = np.sort(image_scores)[-keep_top_k]
                keep = np.where(cls_boxes[:, 0] >= image_thresh)[0]
                pred_result = pred_result[keep, :]
302

303 304 305
            res = fluid.LoDTensor()
            res.set_lod([[0, pred_result.shape[0]]])
            if pred_result.shape[0] == 0:
306
                pred_result = np.array([[1]], dtype=np.float32)
307
            res.set(pred_result, fluid.CPUPlace())
308

309
            return res
310 311 312 313 314 315 316 317 318

        pred_result = create_tmp_var(
            fluid.default_main_program(),
            name='softnms_pred_result',
            dtype='float32',
            shape=[6],
            lod_leval=1)
        fluid.layers.py_func(
            func=_soft_nms, x=[bboxes, scores], out=pred_result)
319 320
        return pred_result

321 322 323 324 325

@register
class BBoxAssigner(object):
    __op__ = fluid.layers.generate_proposal_labels
    __append_doc__ = True
326
    __shared__ = ['num_classes']
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
                 fg_thresh=.5,
                 bg_thresh_hi=.5,
                 bg_thresh_lo=0.,
                 bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                 num_classes=81,
                 shuffle_before_sample=True):
        super(BBoxAssigner, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh_hi = bg_thresh_hi
        self.bg_thresh_lo = bg_thresh_lo
        self.bbox_reg_weights = bbox_reg_weights
        self.class_nums = num_classes
        self.use_random = shuffle_before_sample


@register
class RoIAlign(object):
    __op__ = fluid.layers.roi_align
    __append_doc__ = True

    def __init__(self, resolution=7, spatial_scale=1. / 16, sampling_ratio=0):
        super(RoIAlign, self).__init__()
        if isinstance(resolution, Integral):
            resolution = [resolution, resolution]
        self.pooled_height = resolution[0]
        self.pooled_width = resolution[1]
        self.spatial_scale = spatial_scale
        self.sampling_ratio = sampling_ratio


@register
class RoIPool(object):
    __op__ = fluid.layers.roi_pool
    __append_doc__ = True

    def __init__(self, resolution=7, spatial_scale=1. / 16):
        super(RoIPool, self).__init__()
        if isinstance(resolution, Integral):
            resolution = [resolution, resolution]
        self.pooled_height = resolution[0]
        self.pooled_width = resolution[1]
        self.spatial_scale = spatial_scale


@register
class MultiBoxHead(object):
    __op__ = fluid.layers.multi_box_head
    __append_doc__ = True

    def __init__(self,
                 min_ratio=20,
                 max_ratio=90,
385
                 base_size=300,
386 387 388 389
                 min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
                 max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
                 aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.],
                                [2., 3.]],
390
                 steps=None,
391
                 offset=0.5,
392 393 394 395
                 flip=True,
                 min_max_aspect_ratios_order=False,
                 kernel_size=1,
                 pad=0):
396 397 398
        super(MultiBoxHead, self).__init__()
        self.min_ratio = min_ratio
        self.max_ratio = max_ratio
399
        self.base_size = base_size
400 401 402
        self.min_sizes = min_sizes
        self.max_sizes = max_sizes
        self.aspect_ratios = aspect_ratios
403
        self.steps = steps
404 405
        self.offset = offset
        self.flip = flip
406 407 408
        self.min_max_aspect_ratios_order = min_max_aspect_ratios_order
        self.kernel_size = kernel_size
        self.pad = pad
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462


@register
@serializable
class SSDOutputDecoder(object):
    __op__ = fluid.layers.detection_output
    __append_doc__ = True

    def __init__(self,
                 nms_threshold=0.45,
                 nms_top_k=400,
                 keep_top_k=200,
                 score_threshold=0.01,
                 nms_eta=1.0,
                 background_label=0):
        super(SSDOutputDecoder, self).__init__()
        self.nms_threshold = nms_threshold
        self.background_label = background_label
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.score_threshold = score_threshold
        self.nms_eta = nms_eta


@register
@serializable
class RetinaTargetAssign(object):
    __op__ = fluid.layers.retinanet_target_assign
    __append_doc__ = True

    def __init__(self, positive_overlap=0.5, negative_overlap=0.4):
        super(RetinaTargetAssign, self).__init__()
        self.positive_overlap = positive_overlap
        self.negative_overlap = negative_overlap


@register
@serializable
class RetinaOutputDecoder(object):
    __op__ = fluid.layers.retinanet_detection_output
    __append_doc__ = True

    def __init__(self,
                 score_thresh=0.05,
                 nms_thresh=0.3,
                 pre_nms_top_n=1000,
                 detections_per_im=100,
                 nms_eta=1.0):
        super(RetinaOutputDecoder, self).__init__()
        self.score_threshold = score_thresh
        self.nms_threshold = nms_thresh
        self.nms_top_k = pre_nms_top_n
        self.keep_top_k = detections_per_im
        self.nms_eta = nms_eta