Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
c06f1ea0
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c06f1ea0
编写于
4月 04, 2020
作者:
G
Guanghua Yu
提交者:
GitHub
4月 04, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mobilenetvs & ssdlite (#439)
上级
2866aa3d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
433 addition
and
2 deletion
+433
-2
ppdet/modeling/backbones/__init__.py
ppdet/modeling/backbones/__init__.py
+2
-0
ppdet/modeling/backbones/mobilenet_v3.py
ppdet/modeling/backbones/mobilenet_v3.py
+277
-0
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+154
-2
未找到文件。
ppdet/modeling/backbones/__init__.py
浏览文件 @
c06f1ea0
...
...
@@ -18,6 +18,7 @@ from . import resnet
from
.
import
resnext
from
.
import
darknet
from
.
import
mobilenet
from
.
import
mobilenet_v3
from
.
import
senet
from
.
import
fpn
from
.
import
vgg
...
...
@@ -33,6 +34,7 @@ from .resnet import *
from
.resnext
import
*
from
.darknet
import
*
from
.mobilenet
import
*
from
.mobilenet_v3
import
*
from
.senet
import
*
from
.fpn
import
*
from
.vgg
import
*
...
...
ppdet/modeling/backbones/mobilenet_v3.py
0 → 100644
浏览文件 @
c06f1ea0
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
ppdet.core.workspace
import
register
import
math
__all__
=
[
'MobileNetV3'
]
@
register
class
MobileNetV3
():
def
__init__
(
self
,
scale
=
1.0
,
model_name
=
'small'
,
with_extra_blocks
=
False
,
conv_decay
=
0.0
,
bn_decay
=
0.0
,
extra_block_filters
=
[[
256
,
512
],
[
128
,
256
],
[
128
,
256
],
[
64
,
128
]]):
self
.
scale
=
scale
self
.
model_name
=
model_name
self
.
with_extra_blocks
=
with_extra_blocks
self
.
extra_block_filters
=
extra_block_filters
self
.
conv_decay
=
conv_decay
self
.
bn_decay
=
bn_decay
self
.
inplanes
=
16
self
.
end_points
=
[]
self
.
block_stride
=
1
if
model_name
==
"large"
:
self
.
cfg
=
[
# kernel_size, expand, channel, se_block, act_mode, stride
[
3
,
16
,
16
,
False
,
'relu'
,
1
],
[
3
,
64
,
24
,
False
,
'relu'
,
2
],
[
3
,
72
,
24
,
False
,
'relu'
,
1
],
[
5
,
72
,
40
,
True
,
'relu'
,
2
],
[
5
,
120
,
40
,
True
,
'relu'
,
1
],
[
5
,
120
,
40
,
True
,
'relu'
,
1
],
[
3
,
240
,
80
,
False
,
'hard_swish'
,
2
],
[
3
,
200
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
184
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
184
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
480
,
112
,
True
,
'hard_swish'
,
1
],
[
3
,
672
,
112
,
True
,
'hard_swish'
,
1
],
[
5
,
672
,
160
,
True
,
'hard_swish'
,
2
],
[
5
,
960
,
160
,
True
,
'hard_swish'
,
1
],
[
5
,
960
,
160
,
True
,
'hard_swish'
,
1
],
]
elif
model_name
==
"small"
:
self
.
cfg
=
[
# kernel_size, expand, channel, se_block, act_mode, stride
[
3
,
16
,
16
,
True
,
'relu'
,
2
],
[
3
,
72
,
24
,
False
,
'relu'
,
2
],
[
3
,
88
,
24
,
False
,
'relu'
,
1
],
[
5
,
96
,
40
,
True
,
'hard_swish'
,
2
],
[
5
,
240
,
40
,
True
,
'hard_swish'
,
1
],
[
5
,
240
,
40
,
True
,
'hard_swish'
,
1
],
[
5
,
120
,
48
,
True
,
'hard_swish'
,
1
],
[
5
,
144
,
48
,
True
,
'hard_swish'
,
1
],
[
5
,
288
,
96
,
True
,
'hard_swish'
,
2
],
[
5
,
576
,
96
,
True
,
'hard_swish'
,
1
],
[
5
,
576
,
96
,
True
,
'hard_swish'
,
1
],
]
else
:
raise
NotImplementedError
def
_conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
num_groups
=
1
,
if_act
=
True
,
act
=
None
,
name
=
None
,
use_cudnn
=
True
):
conv_param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
,
regularizer
=
L2Decay
(
self
.
conv_decay
))
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
conv_param_attr
,
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn_param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
L2Decay
(
self
.
bn_decay
))
bn_bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
L2Decay
(
self
.
bn_decay
))
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
bn_param_attr
,
bias_attr
=
bn_bias_attr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
if
act
==
'relu'
:
bn
=
fluid
.
layers
.
relu
(
bn
)
elif
act
==
'hard_swish'
:
bn
=
self
.
_hard_swish
(
bn
)
elif
act
==
'relu6'
:
bn
=
fluid
.
layers
.
relu6
(
bn
)
return
bn
def
_hard_swish
(
self
,
x
):
return
x
*
fluid
.
layers
.
relu6
(
x
+
3
)
/
6.
def
_se_block
(
self
,
input
,
num_out_filter
,
ratio
=
4
,
name
=
None
):
num_mid_filter
=
int
(
num_out_filter
//
ratio
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
pool
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_1_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_1_offset'
))
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
act
=
'hard_sigmoid'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_2_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_2_offset'
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
conv2
,
axis
=
0
)
return
scale
def
_residual_unit
(
self
,
input
,
num_in_filter
,
num_mid_filter
,
num_out_filter
,
stride
,
filter_size
,
act
=
None
,
use_se
=
False
,
name
=
None
):
input_data
=
input
conv0
=
self
.
_conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
act
=
act
,
name
=
name
+
'_expand'
)
if
self
.
block_stride
==
16
and
stride
==
2
:
self
.
end_points
.
append
(
conv0
)
conv1
=
self
.
_conv_bn_layer
(
input
=
conv0
,
filter_size
=
filter_size
,
num_filters
=
num_mid_filter
,
stride
=
stride
,
padding
=
int
((
filter_size
-
1
)
//
2
),
if_act
=
True
,
act
=
act
,
num_groups
=
num_mid_filter
,
use_cudnn
=
False
,
name
=
name
+
'_depthwise'
)
if
use_se
:
conv1
=
self
.
_se_block
(
input
=
conv1
,
num_out_filter
=
num_mid_filter
,
name
=
name
+
'_se'
)
conv2
=
self
.
_conv_bn_layer
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
False
,
name
=
name
+
'_linear'
)
if
num_in_filter
!=
num_out_filter
or
stride
!=
1
:
return
conv2
else
:
return
fluid
.
layers
.
elementwise_add
(
x
=
input_data
,
y
=
conv2
,
act
=
None
)
def
_extra_block_dw
(
self
,
input
,
num_filters1
,
num_filters2
,
stride
,
name
=
None
):
pointwise_conv
=
self
.
_conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
int
(
num_filters1
),
stride
=
1
,
padding
=
"SAME"
,
act
=
'relu6'
,
name
=
name
+
"_extra1"
)
depthwise_conv
=
self
.
_conv_bn_layer
(
input
=
pointwise_conv
,
filter_size
=
3
,
num_filters
=
int
(
num_filters2
),
stride
=
stride
,
padding
=
"SAME"
,
num_groups
=
int
(
num_filters1
),
act
=
'relu6'
,
use_cudnn
=
False
,
name
=
name
+
"_extra2_dw"
)
normal_conv
=
self
.
_conv_bn_layer
(
input
=
depthwise_conv
,
filter_size
=
1
,
num_filters
=
int
(
num_filters2
),
stride
=
1
,
padding
=
"SAME"
,
act
=
'relu6'
,
name
=
name
+
"_extra2_sep"
)
return
normal_conv
def
__call__
(
self
,
input
):
scale
=
self
.
scale
inplanes
=
self
.
inplanes
cfg
=
self
.
cfg
blocks
=
[]
#conv1
conv
=
self
.
_conv_bn_layer
(
input
,
filter_size
=
3
,
num_filters
=
inplanes
if
scale
<=
1.0
else
int
(
inplanes
*
scale
),
stride
=
2
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
act
=
'hard_swish'
,
name
=
'conv1'
)
i
=
0
for
layer_cfg
in
cfg
:
self
.
block_stride
*=
layer_cfg
[
5
]
conv
=
self
.
_residual_unit
(
input
=
conv
,
num_in_filter
=
inplanes
,
num_mid_filter
=
int
(
scale
*
layer_cfg
[
1
]),
num_out_filter
=
int
(
scale
*
layer_cfg
[
2
]),
act
=
layer_cfg
[
4
],
stride
=
layer_cfg
[
5
],
filter_size
=
layer_cfg
[
0
],
use_se
=
layer_cfg
[
3
],
name
=
'conv'
+
str
(
i
+
2
))
inplanes
=
int
(
scale
*
layer_cfg
[
2
])
i
+=
1
if
not
self
.
with_extra_blocks
:
return
conv
# extra block
conv_extra
=
self
.
_conv_bn_layer
(
conv
,
filter_size
=
1
,
num_filters
=
int
(
scale
*
cfg
[
-
1
][
1
]),
stride
=
1
,
padding
=
"SAME"
,
num_groups
=
1
,
if_act
=
True
,
act
=
'hard_swish'
,
name
=
'conv'
+
str
(
i
+
2
))
self
.
end_points
.
append
(
conv_extra
)
i
+=
1
for
block_filter
in
self
.
extra_block_filters
:
conv_extra
=
self
.
_extra_block_dw
(
conv_extra
,
block_filter
[
0
],
block_filter
[
1
],
2
,
'conv'
+
str
(
i
+
2
))
self
.
end_points
.
append
(
conv_extra
)
i
+=
1
return
self
.
end_points
ppdet/modeling/ops.py
浏览文件 @
c06f1ea0
...
...
@@ -14,6 +14,8 @@
import
numpy
as
np
from
numbers
import
Integral
import
math
import
six
from
paddle
import
fluid
from
paddle.fluid.param_attr
import
ParamAttr
...
...
@@ -24,8 +26,9 @@ from ppdet.utils.bbox_utils import bbox_overlaps, box_to_delta
__all__
=
[
'AnchorGenerator'
,
'DropBlock'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'MultiClassSoftNMS'
,
'LibraBBoxAssigner'
'MultiBoxHead'
,
'SSDLiteMultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'MultiClassSoftNMS'
,
'LibraBBoxAssigner'
]
...
...
@@ -1064,6 +1067,155 @@ class MultiBoxHead(object):
self
.
pad
=
pad
@
register
@
serializable
class
SSDLiteMultiBoxHead
(
object
):
def
__init__
(
self
,
min_ratio
=
20
,
max_ratio
=
90
,
base_size
=
300
,
min_sizes
=
None
,
max_sizes
=
None
,
aspect_ratios
=
[[
2.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
]],
steps
=
None
,
offset
=
0.5
,
flip
=
True
,
clip
=
False
,
pad
=
0
,
conv_decay
=
0.0
):
super
(
SSDLiteMultiBoxHead
,
self
).
__init__
()
self
.
min_ratio
=
min_ratio
self
.
max_ratio
=
max_ratio
self
.
base_size
=
base_size
self
.
min_sizes
=
min_sizes
self
.
max_sizes
=
max_sizes
self
.
aspect_ratios
=
aspect_ratios
self
.
steps
=
steps
self
.
offset
=
offset
self
.
flip
=
flip
self
.
pad
=
pad
self
.
clip
=
clip
self
.
conv_decay
=
conv_decay
def
_separable_conv
(
self
,
input
,
num_filters
,
name
):
dwconv_param_attr
=
ParamAttr
(
name
=
name
+
'dw_weights'
,
regularizer
=
L2Decay
(
self
.
conv_decay
))
num_filter1
=
input
.
shape
[
1
]
depthwise_conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filter1
,
filter_size
=
3
,
stride
=
1
,
padding
=
"SAME"
,
groups
=
int
(
num_filter1
),
act
=
None
,
use_cudnn
=
False
,
param_attr
=
dwconv_param_attr
,
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn_param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
L2Decay
(
0.0
))
bn_bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
L2Decay
(
0.0
))
bn
=
fluid
.
layers
.
batch_norm
(
input
=
depthwise_conv
,
param_attr
=
bn_param_attr
,
bias_attr
=
bn_bias_attr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
bn
=
fluid
.
layers
.
relu6
(
bn
)
pwconv_param_attr
=
ParamAttr
(
name
=
name
+
'pw_weights'
,
regularizer
=
L2Decay
(
self
.
conv_decay
))
pointwise_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
use_cudnn
=
True
,
param_attr
=
pwconv_param_attr
,
bias_attr
=
False
)
return
pointwise_conv
def
__call__
(
self
,
inputs
,
image
,
num_classes
):
def
_permute_and_reshape
(
input
,
last_dim
):
trans
=
fluid
.
layers
.
transpose
(
input
,
perm
=
[
0
,
2
,
3
,
1
])
compile_shape
=
[
0
,
-
1
,
last_dim
]
return
fluid
.
layers
.
reshape
(
trans
,
shape
=
compile_shape
)
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
if
self
.
min_sizes
is
None
and
self
.
max_sizes
is
None
:
num_layer
=
len
(
inputs
)
self
.
min_sizes
=
[]
self
.
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
self
.
max_ratio
-
self
.
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
six
.
moves
.
range
(
self
.
min_ratio
,
self
.
max_ratio
+
1
,
step
):
self
.
min_sizes
.
append
(
self
.
base_size
*
ratio
/
100.
)
self
.
max_sizes
.
append
(
self
.
base_size
*
(
ratio
+
step
)
/
100.
)
self
.
min_sizes
=
[
self
.
base_size
*
.
10
]
+
self
.
min_sizes
self
.
max_sizes
=
[
self
.
base_size
*
.
20
]
+
self
.
max_sizes
locs
,
confs
=
[],
[]
boxes
,
mvars
=
[],
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
self
.
min_sizes
[
i
]
max_size
=
self
.
max_sizes
[
i
]
if
not
_is_list_or_tuple_
(
min_size
):
min_size
=
[
min_size
]
if
not
_is_list_or_tuple_
(
max_size
):
max_size
=
[
max_size
]
step
=
[
self
.
steps
[
i
]
if
self
.
steps
else
0.0
,
self
.
steps
[
i
]
if
self
.
steps
else
0.0
]
box
,
var
=
fluid
.
layers
.
prior_box
(
input
,
image
,
min_sizes
=
min_size
,
max_sizes
=
max_size
,
steps
=
step
,
aspect_ratios
=
self
.
aspect_ratios
[
i
],
variance
=
[
0.1
,
0.1
,
0.2
,
0.2
],
clip
=
self
.
clip
,
flip
=
self
.
flip
,
offset
=
0.5
)
num_boxes
=
box
.
shape
[
2
]
box
=
fluid
.
layers
.
reshape
(
box
,
shape
=
[
-
1
,
4
])
var
=
fluid
.
layers
.
reshape
(
var
,
shape
=
[
-
1
,
4
])
num_loc_output
=
num_boxes
*
4
num_conf_output
=
num_boxes
*
num_classes
# get loc
mbox_loc
=
self
.
_separable_conv
(
input
,
num_loc_output
,
"loc_{}"
.
format
(
i
+
1
))
loc
=
_permute_and_reshape
(
mbox_loc
,
4
)
# get conf
mbox_conf
=
self
.
_separable_conv
(
input
,
num_conf_output
,
"conf_{}"
.
format
(
i
+
1
))
conf
=
_permute_and_reshape
(
mbox_conf
,
num_classes
)
locs
.
append
(
loc
)
confs
.
append
(
conf
)
boxes
.
append
(
box
)
mvars
.
append
(
var
)
ssd_mbox_loc
=
fluid
.
layers
.
concat
(
locs
,
axis
=
1
)
ssd_mbox_conf
=
fluid
.
layers
.
concat
(
confs
,
axis
=
1
)
prior_boxes
=
fluid
.
layers
.
concat
(
boxes
)
box_vars
=
fluid
.
layers
.
concat
(
mvars
)
prior_boxes
.
stop_gradient
=
True
box_vars
.
stop_gradient
=
True
return
ssd_mbox_loc
,
ssd_mbox_conf
,
prior_boxes
,
box_vars
@
register
@
serializable
class
SSDOutputDecoder
(
object
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录