amd_iommu.c 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <asm/proto.h>
26
#include <asm/iommu.h>
27
#include <asm/gart.h>
28
#include <asm/amd_iommu_types.h>
29
#include <asm/amd_iommu.h>
30 31 32

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

33 34
#define EXIT_LOOP_COUNT 10000000

35 36
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

37 38 39 40
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

41 42 43
/*
 * general struct to manage commands send to an IOMMU
 */
44
struct iommu_cmd {
45 46 47
	u32 data[4];
};

48 49 50
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);

51
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
52 53
static int iommu_has_npcache(struct amd_iommu *iommu)
{
54
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
55 56
}

57 58 59 60 61 62
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

143 144
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
145 146 147 148 149 150
	struct amd_iommu *iommu;

	list_for_each_entry(iommu, &amd_iommu_list, list)
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
151 152
}

153 154 155 156 157 158 159 160 161 162
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
163
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
164 165 166 167 168
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
169
	target = iommu->cmd_buf + tail;
170 171 172 173 174 175 176 177 178 179
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

180 181 182 183
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
184
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
185 186 187 188 189 190
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
191 192
	if (!ret)
		iommu->need_sync = 1;
193 194 195 196 197
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

238 239 240 241 242 243 244
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
245 246
static int iommu_completion_wait(struct amd_iommu *iommu)
{
247 248
	int ret = 0;
	unsigned long flags;
249

250 251
	spin_lock_irqsave(&iommu->lock, flags);

252 253 254
	if (!iommu->need_sync)
		goto out;

255
	ret = __iommu_completion_wait(iommu);
256

257
	iommu->need_sync = 0;
258 259

	if (ret)
260
		goto out;
261

262
	__iommu_wait_for_completion(iommu);
263

264 265
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
266 267 268 269

	return 0;
}

270 271 272
/*
 * Command send function for invalidating a device table entry
 */
273 274
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
275
	struct iommu_cmd cmd;
276
	int ret;
277 278 279 280 281 282 283

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

284 285 286
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
287 288
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

304 305 306
/*
 * Generic command send function for invalidaing TLB entries
 */
307 308 309
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
310
	struct iommu_cmd cmd;
311
	int ret;
312

313
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
314

315 316 317
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
318 319
}

320 321 322 323 324
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
325 326 327
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
328
	int s = 0;
329
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
330 331 332

	address &= PAGE_MASK;

333 334 335 336 337 338 339
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
340 341
	}

342 343
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

344 345
	return 0;
}
346

347 348 349 350 351 352 353 354
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
#ifdef CONFIG_IOMMU_API
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}
#endif

379 380 381 382 383 384 385 386 387 388 389 390 391 392
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
393 394 395 396
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
397 398 399 400
{
	u64 __pte, *pte, *page;

	bus_addr  = PAGE_ALIGN(bus_addr);
401
	phys_addr = PAGE_ALIGN(phys_addr);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

443 444 445 446
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
447 448 449 450 451 452 453 454 455 456 457 458 459 460
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

461 462 463 464 465 466
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

483 484 485 486
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
487 488 489 490 491 492 493 494
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
495
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
496 497 498 499 500 501 502 503 504 505 506 507 508
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
	}

	return 0;
}

509 510 511
/*
 * Inits the unity mappings required for a specific device
 */
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

529 530 531 532 533 534 535 536 537
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
538

539 540 541 542 543
/*
 * The address allocator core function.
 *
 * called with domain->lock held
 */
544 545
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
546
					     unsigned int pages,
547 548
					     unsigned long align_mask,
					     u64 dma_mask)
549
{
550
	unsigned long limit;
551 552 553 554 555
	unsigned long address;
	unsigned long boundary_size;

	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;
556 557
	limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
				       dma_mask >> PAGE_SHIFT);
558

559
	if (dom->next_bit >= limit) {
560
		dom->next_bit = 0;
561 562
		dom->need_flush = true;
	}
563 564

	address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
565
				   0 , boundary_size, align_mask);
566
	if (address == -1) {
567
		address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
568
				0, boundary_size, align_mask);
569 570
		dom->need_flush = true;
	}
571 572 573 574 575 576 577 578 579 580 581 582

	if (likely(address != -1)) {
		dom->next_bit = address + pages;
		address <<= PAGE_SHIFT;
	} else
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

583 584 585 586 587
/*
 * The address free function.
 *
 * called with domain->lock held
 */
588 589 590 591 592 593
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
	address >>= PAGE_SHIFT;
	iommu_area_free(dom->bitmap, address, pages);
594

595
	if (address >= dom->next_bit)
596
		dom->need_flush = true;
597 598
}

599 600 601 602 603 604 605 606 607 608
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

626 627 628 629 630 631 632 633 634 635 636 637
#ifdef CONFIG_IOMMU_API
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
#endif

638 639 640 641
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
642 643 644 645 646 647 648 649 650
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

651
	iommu_area_reserve(dom->bitmap, start_page, pages);
652 653
}

654
static void free_pagetable(struct protection_domain *domain)
655 656 657 658
{
	int i, j;
	u64 *p1, *p2, *p3;

659
	p1 = domain->pt_root;
660 661 662 663 664 665 666 667 668

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
669
		for (j = 0; j < 512; ++j) {
670 671 672 673 674 675 676 677 678 679
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
680 681

	domain->pt_root = NULL;
682 683
}

684 685 686 687
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
688 689 690 691 692
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

693
	free_pagetable(&dom->domain);
694 695 696 697 698 699 700 701

	kfree(dom->pte_pages);

	kfree(dom->bitmap);

	kfree(dom);
}

702 703 704 705 706
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
						   unsigned order)
{
	struct dma_ops_domain *dma_dom;
	unsigned i, num_pte_pages;
	u64 *l2_pde;
	u64 address;

	/*
	 * Currently the DMA aperture must be between 32 MB and 1GB in size
	 */
	if ((order < 25) || (order > 30))
		return NULL;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
732
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
	dma_dom->aperture_size = (1ULL << order);
	dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
				  GFP_KERNEL);
	if (!dma_dom->bitmap)
		goto free_dma_dom;
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
	dma_dom->bitmap[0] = 1;
	dma_dom->next_bit = 0;

748
	dma_dom->need_flush = false;
749
	dma_dom->target_dev = 0xffff;
750

751
	/* Intialize the exclusion range if necessary */
752 753 754
	if (iommu->exclusion_start &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
755 756 757
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
758 759 760
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

761 762 763 764 765
	/*
	 * At the last step, build the page tables so we don't need to
	 * allocate page table pages in the dma_ops mapping/unmapping
	 * path.
	 */
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
	dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
			GFP_KERNEL);
	if (!dma_dom->pte_pages)
		goto free_dma_dom;

	l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
	if (l2_pde == NULL)
		goto free_dma_dom;

	dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));

	for (i = 0; i < num_pte_pages; ++i) {
		dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!dma_dom->pte_pages[i])
			goto free_dma_dom;
		address = virt_to_phys(dma_dom->pte_pages[i]);
		l2_pde[i] = IOMMU_L1_PDE(address);
	}

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

794 795 796 797 798 799 800 801 802
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

803 804 805 806
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
807 808 809 810 811 812 813 814 815 816 817 818
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

819 820 821 822
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
823 824 825
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
826 827 828 829
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

830 831
	domain->dev_cnt += 1;

832 833 834
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
835 836

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
837 838
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
839 840 841 842 843 844 845 846
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);
}

847 848 849 850 851 852
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

853 854 855 856 857 858 859 860 861 862 863 864
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

891 892 893 894 895 896 897
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
898 899 900 901 902 903 904 905 906
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

907 908 909 910 911 912
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
913 914

	pcidev = to_pci_dev(dev);
915
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
916

917
	/* device not translated by any IOMMU in the system? */
918
	if (_bdf > amd_iommu_last_bdf)
919 920 921 922 923 924 925 926 927
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
928 929 930
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
931
		*domain = &dma_dom->domain;
932
		attach_device(*iommu, *domain, *bdf);
933 934 935 936 937
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
				"device ", (*domain)->id);
		print_devid(_bdf, 1);
	}

938
	if (domain_for_device(_bdf) == NULL)
939
		attach_device(*iommu, *domain, _bdf);
940

941 942 943
	return 1;
}

944 945 946 947
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

979 980 981
/*
 * The generic unmapping function for on page in the DMA address space.
 */
982 983 984 985 986 987 988 989 990
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

991
	WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
992 993 994 995 996 997 998 999 1000

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1001 1002
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1003 1004
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1005 1006
 * Must be called with the domain lock held.
 */
1007 1008 1009 1010 1011
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1012
			       int dir,
1013 1014
			       bool align,
			       u64 dma_mask)
1015 1016 1017 1018
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
	dma_addr_t address, start;
	unsigned int pages;
1019
	unsigned long align_mask = 0;
1020 1021
	int i;

1022
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1023 1024
	paddr &= PAGE_MASK;

1025 1026 1027
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1028 1029
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	if (unlikely(address == bad_dma_address))
		goto out;

	start = address;
	for (i = 0; i < pages; ++i) {
		dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1041
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1042 1043 1044
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1045 1046
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1047 1048 1049 1050
out:
	return address;
}

1051 1052 1053 1054
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1055 1056 1057 1058 1059 1060 1061 1062 1063
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1064 1065
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1066 1067
		return;

1068
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1069 1070 1071 1072 1073 1074 1075 1076 1077
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1078

1079
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1080
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1081 1082
		dma_dom->need_flush = false;
	}
1083 1084
}

1085 1086 1087
/*
 * The exported map_single function for dma_ops.
 */
1088 1089 1090 1091 1092 1093 1094 1095
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
			     size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1096
	u64 dma_mask;
1097

1098 1099 1100
	if (!check_device(dev))
		return bad_dma_address;

1101
	dma_mask = *dev->dma_mask;
1102 1103 1104 1105

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1106
		/* device not handled by any AMD IOMMU */
1107 1108
		return (dma_addr_t)paddr;

1109 1110 1111
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1112
	spin_lock_irqsave(&domain->lock, flags);
1113 1114
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1115 1116 1117
	if (addr == bad_dma_address)
		goto out;

1118
	iommu_completion_wait(iommu);
1119 1120 1121 1122 1123 1124 1125

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1126 1127 1128
/*
 * The exported unmap_single function for dma_ops.
 */
1129 1130 1131 1132 1133 1134 1135 1136
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
			 size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1137 1138
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1139
		/* device not handled by any AMD IOMMU */
1140 1141
		return;

1142 1143 1144
	if (!dma_ops_domain(domain))
		return;

1145 1146 1147 1148
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1149
	iommu_completion_wait(iommu);
1150 1151 1152 1153

	spin_unlock_irqrestore(&domain->lock, flags);
}

1154 1155 1156 1157
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1172 1173 1174 1175
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static int map_sg(struct device *dev, struct scatterlist *sglist,
		  int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1187
	u64 dma_mask;
1188

1189 1190 1191
	if (!check_device(dev))
		return 0;

1192
	dma_mask = *dev->dma_mask;
1193 1194 1195 1196 1197 1198

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1199 1200 1201
	if (!dma_ops_domain(domain))
		return 0;

1202 1203 1204 1205 1206 1207
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1208 1209
					      paddr, s->length, dir, false,
					      dma_mask);
1210 1211 1212 1213 1214 1215 1216 1217

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1218
	iommu_completion_wait(iommu);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1237 1238 1239 1240
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
		     int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1251 1252
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1253 1254
		return;

1255 1256 1257
	if (!dma_ops_domain(domain))
		return;

1258 1259 1260 1261 1262 1263 1264 1265
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1266
	iommu_completion_wait(iommu);
1267 1268 1269 1270

	spin_unlock_irqrestore(&domain->lock, flags);
}

1271 1272 1273
/*
 * The exported alloc_coherent function for dma_ops.
 */
1274 1275 1276 1277 1278 1279 1280 1281 1282
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1283
	u64 dma_mask = dev->coherent_dma_mask;
1284

1285 1286
	if (!check_device(dev))
		return NULL;
1287

1288 1289
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1290

1291
	flag |= __GFP_ZERO;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1303 1304 1305
	if (!dma_ops_domain(domain))
		goto out_free;

1306 1307 1308
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1309 1310 1311
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1312
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1313

1314 1315
	if (*dma_addr == bad_dma_address)
		goto out_free;
1316

1317
	iommu_completion_wait(iommu);
1318 1319 1320 1321

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1322 1323 1324 1325 1326 1327

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1328 1329
}

1330 1331 1332
/*
 * The exported free_coherent function for dma_ops.
 */
1333 1334 1335 1336 1337 1338 1339 1340
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1341 1342 1343
	if (!check_device(dev))
		return;

1344 1345 1346 1347 1348
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1349 1350 1351
	if (!dma_ops_domain(domain))
		goto free_mem;

1352 1353 1354 1355
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1356
	iommu_completion_wait(iommu);
1357 1358 1359 1360 1361 1362 1363

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1388
/*
1389 1390
 * The function for pre-allocating protection domains.
 *
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
void prealloc_protection_domains(void)
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		devid = (dev->bus->number << 8) | dev->devfn;
1405
		if (devid > amd_iommu_last_bdf)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
		dma_dom = dma_ops_domain_alloc(iommu, order);
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1417 1418 1419
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1420 1421 1422
	}
}

1423 1424 1425 1426 1427 1428 1429
static struct dma_mapping_ops amd_iommu_dma_ops = {
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
	.map_single = map_single,
	.unmap_single = unmap_single,
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1430
	.dma_supported = amd_iommu_dma_supported,
1431 1432
};

1433 1434 1435
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1436 1437 1438 1439 1440 1441
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	int ret;

1442 1443 1444 1445 1446
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1447 1448 1449 1450 1451 1452 1453 1454 1455
	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu->default_dom = dma_ops_domain_alloc(iommu, order);
		if (iommu->default_dom == NULL)
			return -ENOMEM;
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1456 1457 1458 1459
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1460 1461 1462 1463 1464 1465
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1466
#ifdef CONFIG_GART_IOMMU
1467 1468
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1469
#endif
1470

1471
	/* Make the driver finally visible to the drivers */
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	dma_ops = &amd_iommu_dma_ops;

	return 0;

free_domains:

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}