amd_iommu.c 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <asm/proto.h>
26
#include <asm/iommu.h>
27
#include <asm/amd_iommu_types.h>
28
#include <asm/amd_iommu.h>
29 30 31

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

32 33
#define EXIT_LOOP_COUNT 10000000

34 35
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

36 37 38 39
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

40 41 42
/*
 * general struct to manage commands send to an IOMMU
 */
43
struct iommu_cmd {
44 45 46
	u32 data[4];
};

47 48 49
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);

50
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
51 52
static int iommu_has_npcache(struct amd_iommu *iommu)
{
53
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
54 55
}

56 57 58 59 60 61
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

142 143
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
144 145 146 147 148 149
	struct amd_iommu *iommu;

	list_for_each_entry(iommu, &amd_iommu_list, list)
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
150 151
}

152 153 154 155 156 157 158 159 160 161
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
162
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
163 164 165 166 167
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
168
	target = iommu->cmd_buf + tail;
169 170 171 172 173 174 175 176 177 178
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

179 180 181 182
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
183
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
184 185 186 187 188 189
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
190 191
	if (!ret)
		iommu->need_sync = 1;
192 193 194 195 196
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

197 198 199 200 201 202 203
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
204 205
static int iommu_completion_wait(struct amd_iommu *iommu)
{
206
	int ret = 0, ready = 0;
207
	unsigned status = 0;
208
	struct iommu_cmd cmd;
209
	unsigned long flags, i = 0;
210 211

	memset(&cmd, 0, sizeof(cmd));
212
	cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
213 214
	CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

215 216
	spin_lock_irqsave(&iommu->lock, flags);

217 218 219 220 221
	if (!iommu->need_sync)
		goto out;

	iommu->need_sync = 0;

222
	ret = __iommu_queue_command(iommu, &cmd);
223 224

	if (ret)
225
		goto out;
226

227 228
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
229 230 231
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
232 233
	}

234 235 236 237
	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

238 239
	if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
		printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
240 241
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
242 243 244 245

	return 0;
}

246 247 248
/*
 * Command send function for invalidating a device table entry
 */
249 250
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
251
	struct iommu_cmd cmd;
252
	int ret;
253 254 255 256 257 258 259

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

260 261 262
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
263 264
}

265 266 267
/*
 * Generic command send function for invalidaing TLB entries
 */
268 269 270
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
271
	struct iommu_cmd cmd;
272
	int ret;
273 274 275 276 277

	memset(&cmd, 0, sizeof(cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
	cmd.data[1] |= domid;
278
	cmd.data[2] = lower_32_bits(address);
279
	cmd.data[3] = upper_32_bits(address);
280
	if (s) /* size bit - we flush more than one 4kb page */
281
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
282
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
283 284
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;

285 286 287
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
288 289
}

290 291 292 293 294
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
295 296 297
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
298
	int s = 0;
299
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
300 301 302

	address &= PAGE_MASK;

303 304 305 306 307 308 309
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
310 311
	}

312 313
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

314 315
	return 0;
}
316

317 318 319 320 321 322 323 324
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
339 340 341 342 343 344 345 346
static int iommu_map(struct protection_domain *dom,
		     unsigned long bus_addr,
		     unsigned long phys_addr,
		     int prot)
{
	u64 __pte, *pte, *page;

	bus_addr  = PAGE_ALIGN(bus_addr);
347
	phys_addr = PAGE_ALIGN(phys_addr);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

389 390 391 392
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
393 394 395 396 397 398 399 400 401 402 403 404 405 406
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

407 408 409 410 411 412
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

429 430 431 432
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
	}

	return 0;
}

455 456 457
/*
 * Inits the unity mappings required for a specific device
 */
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

475 476 477 478 479 480 481 482 483
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
484

485 486 487 488 489
/*
 * The address allocator core function.
 *
 * called with domain->lock held
 */
490 491
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
492
					     unsigned int pages,
493 494
					     unsigned long align_mask,
					     u64 dma_mask)
495
{
496
	unsigned long limit;
497 498 499 500 501
	unsigned long address;
	unsigned long boundary_size;

	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;
502 503
	limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
				       dma_mask >> PAGE_SHIFT);
504

505
	if (dom->next_bit >= limit) {
506
		dom->next_bit = 0;
507 508
		dom->need_flush = true;
	}
509 510

	address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
511
				   0 , boundary_size, align_mask);
512
	if (address == -1) {
513
		address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
514
				0, boundary_size, align_mask);
515 516
		dom->need_flush = true;
	}
517 518 519 520 521 522 523 524 525 526 527 528

	if (likely(address != -1)) {
		dom->next_bit = address + pages;
		address <<= PAGE_SHIFT;
	} else
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

529 530 531 532 533
/*
 * The address free function.
 *
 * called with domain->lock held
 */
534 535 536 537 538 539
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
	address >>= PAGE_SHIFT;
	iommu_area_free(dom->bitmap, address, pages);
540

541
	if (address >= dom->next_bit)
542
		dom->need_flush = true;
543 544
}

545 546 547 548 549 550 551 552 553 554
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

572 573 574 575
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
576 577 578 579 580 581 582 583 584
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

585
	iommu_area_reserve(dom->bitmap, start_page, pages);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
}

static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
{
	int i, j;
	u64 *p1, *p2, *p3;

	p1 = dma_dom->domain.pt_root;

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
603
		for (j = 0; j < 512; ++j) {
604 605 606 607 608 609 610 611 612 613 614 615
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
}

616 617 618 619
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
620 621 622 623 624 625 626 627 628 629 630 631 632 633
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

	dma_ops_free_pagetable(dom);

	kfree(dom->pte_pages);

	kfree(dom->bitmap);

	kfree(dom);
}

634 635 636 637 638
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
						   unsigned order)
{
	struct dma_ops_domain *dma_dom;
	unsigned i, num_pte_pages;
	u64 *l2_pde;
	u64 address;

	/*
	 * Currently the DMA aperture must be between 32 MB and 1GB in size
	 */
	if ((order < 25) || (order > 30))
		return NULL;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
	dma_dom->aperture_size = (1ULL << order);
	dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
				  GFP_KERNEL);
	if (!dma_dom->bitmap)
		goto free_dma_dom;
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
	dma_dom->bitmap[0] = 1;
	dma_dom->next_bit = 0;

679
	dma_dom->need_flush = false;
680
	dma_dom->target_dev = 0xffff;
681

682
	/* Intialize the exclusion range if necessary */
683 684 685
	if (iommu->exclusion_start &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
686 687 688
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
689 690 691
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

692 693 694 695 696
	/*
	 * At the last step, build the page tables so we don't need to
	 * allocate page table pages in the dma_ops mapping/unmapping
	 * path.
	 */
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
	dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
			GFP_KERNEL);
	if (!dma_dom->pte_pages)
		goto free_dma_dom;

	l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
	if (l2_pde == NULL)
		goto free_dma_dom;

	dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));

	for (i = 0; i < num_pte_pages; ++i) {
		dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!dma_dom->pte_pages[i])
			goto free_dma_dom;
		address = virt_to_phys(dma_dom->pte_pages[i]);
		l2_pde[i] = IOMMU_L1_PDE(address);
	}

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

725 726 727 728
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
729 730 731 732 733 734 735 736 737 738 739 740
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

741 742 743 744
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
745 746 747 748 749 750 751 752
static void set_device_domain(struct amd_iommu *iommu,
			      struct protection_domain *domain,
			      u16 devid)
{
	unsigned long flags;

	u64 pte_root = virt_to_phys(domain->pt_root);

753 754 755
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
756 757

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
758 759
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
760 761 762 763 764 765 766 767
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);
}

768 769 770 771 772 773
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

774 775 776 777 778 779 780 781 782 783 784 785
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			list_del(&ret->list);
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

813 814 815 816 817 818 819
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
820 821 822 823 824 825 826 827 828
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

829 830 831 832 833 834
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
835 836

	pcidev = to_pci_dev(dev);
837
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
838

839
	/* device not translated by any IOMMU in the system? */
840
	if (_bdf > amd_iommu_last_bdf)
841 842 843 844 845 846 847 848 849
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
850 851 852
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
853 854 855 856 857 858 859
		*domain = &dma_dom->domain;
		set_device_domain(*iommu, *domain, *bdf);
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
				"device ", (*domain)->id);
		print_devid(_bdf, 1);
	}

860 861 862
	if (domain_for_device(_bdf) == NULL)
		set_device_domain(*iommu, *domain, _bdf);

863 864 865
	return 1;
}

866 867 868 869
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

901 902 903
/*
 * The generic unmapping function for on page in the DMA address space.
 */
904 905 906 907 908 909 910 911 912
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

913
	WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
914 915 916 917 918 919 920 921 922

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

923 924
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
925 926
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
927 928
 * Must be called with the domain lock held.
 */
929 930 931 932 933
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
934
			       int dir,
935 936
			       bool align,
			       u64 dma_mask)
937 938 939 940
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
	dma_addr_t address, start;
	unsigned int pages;
941
	unsigned long align_mask = 0;
942 943
	int i;

944
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
945 946
	paddr &= PAGE_MASK;

947 948 949
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

950 951
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
952 953 954 955 956 957 958 959 960 961 962
	if (unlikely(address == bad_dma_address))
		goto out;

	start = address;
	for (i = 0; i < pages; ++i) {
		dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

963
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
964 965 966
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
967 968
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

969 970 971 972
out:
	return address;
}

973 974 975 976
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
977 978 979 980 981 982 983 984 985 986 987 988
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

	if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
		return;

989
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
990 991 992 993 994 995 996 997 998
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
999

1000
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1001
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1002 1003
		dma_dom->need_flush = false;
	}
1004 1005
}

1006 1007 1008
/*
 * The exported map_single function for dma_ops.
 */
1009 1010 1011 1012 1013 1014 1015 1016
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
			     size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1017
	u64 dma_mask;
1018

1019 1020 1021
	if (!check_device(dev))
		return bad_dma_address;

1022
	dma_mask = *dev->dma_mask;
1023 1024 1025 1026

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1027
		/* device not handled by any AMD IOMMU */
1028 1029 1030
		return (dma_addr_t)paddr;

	spin_lock_irqsave(&domain->lock, flags);
1031 1032
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1033 1034 1035
	if (addr == bad_dma_address)
		goto out;

1036
	iommu_completion_wait(iommu);
1037 1038 1039 1040 1041 1042 1043

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1044 1045 1046
/*
 * The exported unmap_single function for dma_ops.
 */
1047 1048 1049 1050 1051 1052 1053 1054
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
			 size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1055 1056
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1057
		/* device not handled by any AMD IOMMU */
1058 1059 1060 1061 1062 1063
		return;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1064
	iommu_completion_wait(iommu);
1065 1066 1067 1068

	spin_unlock_irqrestore(&domain->lock, flags);
}

1069 1070 1071 1072
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1087 1088 1089 1090
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static int map_sg(struct device *dev, struct scatterlist *sglist,
		  int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1102
	u64 dma_mask;
1103

1104 1105 1106
	if (!check_device(dev))
		return 0;

1107
	dma_mask = *dev->dma_mask;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1120 1121
					      paddr, s->length, dir, false,
					      dma_mask);
1122 1123 1124 1125 1126 1127 1128 1129

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1130
	iommu_completion_wait(iommu);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1149 1150 1151 1152
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
		     int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1163 1164
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		return;

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1175
	iommu_completion_wait(iommu);
1176 1177 1178 1179

	spin_unlock_irqrestore(&domain->lock, flags);
}

1180 1181 1182
/*
 * The exported alloc_coherent function for dma_ops.
 */
1183 1184 1185 1186 1187 1188 1189 1190 1191
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1192
	u64 dma_mask = dev->coherent_dma_mask;
1193

1194 1195
	if (!check_device(dev))
		return NULL;
1196

1197 1198
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1199

1200
	flag |= __GFP_ZERO;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1212 1213 1214
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1215 1216 1217
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1218
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1219 1220 1221 1222 1223 1224 1225

	if (*dma_addr == bad_dma_address) {
		free_pages((unsigned long)virt_addr, get_order(size));
		virt_addr = NULL;
		goto out;
	}

1226
	iommu_completion_wait(iommu);
1227 1228 1229 1230 1231 1232 1233

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
}

1234 1235 1236
/*
 * The exported free_coherent function for dma_ops.
 */
1237 1238 1239 1240 1241 1242 1243 1244
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1245 1246 1247
	if (!check_device(dev))
		return;

1248 1249 1250 1251 1252 1253 1254 1255 1256
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1257
	iommu_completion_wait(iommu);
1258 1259 1260 1261 1262 1263 1264

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1289
/*
1290 1291
 * The function for pre-allocating protection domains.
 *
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
void prealloc_protection_domains(void)
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		devid = (dev->bus->number << 8) | dev->devfn;
1306
		if (devid > amd_iommu_last_bdf)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
		dma_dom = dma_ops_domain_alloc(iommu, order);
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1318 1319 1320
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1321 1322 1323
	}
}

1324 1325 1326 1327 1328 1329 1330
static struct dma_mapping_ops amd_iommu_dma_ops = {
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
	.map_single = map_single,
	.unmap_single = unmap_single,
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1331
	.dma_supported = amd_iommu_dma_supported,
1332 1333
};

1334 1335 1336
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1337 1338 1339 1340 1341 1342
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	int ret;

1343 1344 1345 1346 1347
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1348 1349 1350 1351 1352 1353 1354 1355 1356
	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu->default_dom = dma_ops_domain_alloc(iommu, order);
		if (iommu->default_dom == NULL)
			return -ENOMEM;
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1357 1358 1359 1360
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1361 1362 1363 1364 1365 1366
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1367
#ifdef CONFIG_GART_IOMMU
1368 1369
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1370
#endif
1371

1372
	/* Make the driver finally visible to the drivers */
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	dma_ops = &amd_iommu_dma_ops;

	return 0;

free_domains:

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}