blk-mq.c 47.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
					   unsigned int cpu)
{
	return per_cpu_ptr(q->queue_ctx, cpu);
}

/*
 * This assumes per-cpu software queueing queues. They could be per-node
 * as well, for instance. For now this is hardcoded as-is. Note that we don't
 * care about preemption, since we know the ctx's are persistent. This does
 * mean that we can't rely on ctx always matching the currently running CPU.
 */
static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
	return __blk_mq_get_ctx(q, get_cpu());
}

static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
{
	put_cpu();
}

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

65 66
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
67 68 69 70 71
			return true;

	return false;
}

72 73 74 75 76 77 78 79 80
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

81 82 83 84 85 86
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
87 88 89 90 91 92 93 94 95 96 97 98
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

static int blk_mq_queue_enter(struct request_queue *q)
{
	int ret;

	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	smp_wmb();
	/* we have problems to freeze the queue if it's initializing */
	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
		return 0;

	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);

	spin_lock_irq(q->queue_lock);
	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
115 116
		!blk_queue_bypass(q) || blk_queue_dying(q),
		*q->queue_lock);
117
	/* inc usage with lock hold to avoid freeze_queue runs here */
118
	if (!ret && !blk_queue_dying(q))
119
		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
120 121
	else if (blk_queue_dying(q))
		ret = -ENODEV;
122 123 124 125 126 127 128 129 130 131
	spin_unlock_irq(q->queue_lock);

	return ret;
}

static void blk_mq_queue_exit(struct request_queue *q)
{
	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static void __blk_mq_drain_queue(struct request_queue *q)
{
	while (true) {
		s64 count;

		spin_lock_irq(q->queue_lock);
		count = percpu_counter_sum(&q->mq_usage_counter);
		spin_unlock_irq(q->queue_lock);

		if (count == 0)
			break;
		blk_mq_run_queues(q, false);
		msleep(10);
	}
}

148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
static void blk_mq_freeze_queue(struct request_queue *q)
{
	bool drain;

	spin_lock_irq(q->queue_lock);
	drain = !q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

161 162 163
	if (drain)
		__blk_mq_drain_queue(q);
}
164

165 166 167
void blk_mq_drain_queue(struct request_queue *q)
{
	__blk_mq_drain_queue(q);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
}

static void blk_mq_unfreeze_queue(struct request_queue *q)
{
	bool wake = false;

	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth) {
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
		wake = true;
	}
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
	if (wake)
		wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

191 192
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
193
{
194 195 196
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

197 198 199
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
200
	rq->mq_ctx = ctx;
201
	rq->cmd_flags |= rw_flags;
202 203 204 205 206 207 208 209
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
210
	set_start_time_ns(rq);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

231 232 233
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static struct request *
__blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
		struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
{
	struct request *rq;
	unsigned int tag;

	tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
	if (tag != BLK_MQ_TAG_FAIL) {
		rq = hctx->tags->rqs[tag];

		rq->cmd_flags = 0;
		if (blk_mq_tag_busy(hctx)) {
			rq->cmd_flags = REQ_MQ_INFLIGHT;
			atomic_inc(&hctx->nr_active);
		}

		rq->tag = tag;
		blk_mq_rq_ctx_init(q, ctx, rq, rw);
		return rq;
	}

	return NULL;
}

259 260
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
261
{
262 263
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
264 265 266 267 268
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

269 270 271 272 273 274 275 276 277 278 279 280 281 282
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT,
				    reserved);
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
		rq =  __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved);
	}
	blk_mq_put_ctx(ctx);
283 284
	return rq;
}
285
EXPORT_SYMBOL(blk_mq_alloc_request);
286 287 288 289 290 291 292

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

293 294 295
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);

296
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
297
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

333
inline void __blk_mq_end_io(struct request *rq, int error)
334
{
M
Ming Lei 已提交
335 336
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
337
	if (rq->end_io) {
338
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
339 340 341
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
342
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
343
	}
344
}
345 346 347 348 349 350 351 352 353
EXPORT_SYMBOL(__blk_mq_end_io);

void blk_mq_end_io(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_io(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_io);
354

355
static void __blk_mq_complete_request_remote(void *data)
356
{
357
	struct request *rq = data;
358

359
	rq->q->softirq_done_fn(rq);
360 361
}

362
void __blk_mq_complete_request(struct request *rq)
363 364
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
365
	bool shared = false;
366 367
	int cpu;

C
Christoph Hellwig 已提交
368
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
369 370 371
		rq->q->softirq_done_fn(rq);
		return;
	}
372 373

	cpu = get_cpu();
C
Christoph Hellwig 已提交
374 375 376 377
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
378
		rq->csd.func = __blk_mq_complete_request_remote;
379 380
		rq->csd.info = rq;
		rq->csd.flags = 0;
381
		smp_call_function_single_async(ctx->cpu, &rq->csd);
382
	} else {
383
		rq->q->softirq_done_fn(rq);
384
	}
385 386
	put_cpu();
}
387 388 389 390 391 392 393 394 395 396 397

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
398 399 400
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
401
		return;
402 403 404 405 406 407
	if (!blk_mark_rq_complete(rq)) {
		if (q->softirq_done_fn)
			__blk_mq_complete_request(rq);
		else
			blk_mq_end_io(rq, rq->errors);
	}
408 409
}
EXPORT_SYMBOL(blk_mq_complete_request);
410

411
static void blk_mq_start_request(struct request *rq, bool last)
412 413 414 415 416
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
417
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
418 419
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
420

421 422 423
	/*
	 * Just mark start time and set the started bit. Due to memory
	 * ordering, we know we'll see the correct deadline as long as
424 425
	 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
	 * unless one has been set in the request.
426
	 */
427 428 429 430
	if (!rq->timeout)
		rq->deadline = jiffies + q->rq_timeout;
	else
		rq->deadline = jiffies + rq->timeout;
431 432 433 434 435 436 437

	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
438 439 440 441
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}

	/*
	 * Flag the last request in the series so that drivers know when IO
	 * should be kicked off, if they don't do it on a per-request basis.
	 *
	 * Note: the flag isn't the only condition drivers should do kick off.
	 * If drive is busy, the last request might not have the bit set.
	 */
	if (last)
		rq->cmd_flags |= REQ_END;
461 462
}

463
static void __blk_mq_requeue_request(struct request *rq)
464 465 466 467 468
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
469 470 471 472 473

	rq->cmd_flags &= ~REQ_END;

	if (q->dma_drain_size && blk_rq_bytes(rq))
		rq->nr_phys_segments--;
474 475
}

476 477 478 479 480 481
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
482
	blk_mq_add_to_requeue_list(rq, true);
483 484 485
}
EXPORT_SYMBOL(blk_mq_requeue_request);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

	blk_mq_run_queues(q, false);
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

544
struct request *blk_mq_tag_to_rq(struct blk_mq_hw_ctx *hctx, unsigned int tag)
545
{
546 547 548 549 550 551 552
	struct request_queue *q = hctx->queue;

	if ((q->flush_rq->cmd_flags & REQ_FLUSH_SEQ) &&
	    q->flush_rq->tag == tag)
		return q->flush_rq;

	return hctx->tags->rqs[tag];
553 554 555
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

577 578
		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
		if (tag >= hctx->tags->nr_tags)
579 580
			break;

581
		rq = blk_mq_tag_to_rq(hctx, tag++);
582 583
		if (rq->q != hctx->queue)
			continue;
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
{
	struct request_queue *q = rq->q;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return BLK_EH_NOT_HANDLED;

	if (!q->mq_ops->timeout)
		return BLK_EH_RESET_TIMER;

	return q->mq_ops->timeout(rq);
}

630 631 632 633 634 635 636
static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

637 638 639 640 641 642 643 644
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

645
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
646
	}
647

648 649 650 651 652 653 654
	if (next_set) {
		next = blk_rq_timeout(round_jiffies_up(next));
		mod_timer(&q->timeout, next);
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

730 731 732 733 734 735 736 737 738 739 740
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
741
	int queued;
742

743
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
744

745
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
746 747 748 749 750 751 752
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
753
	flush_busy_ctxs(hctx, &rq_list);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
769
	queued = 0;
770 771 772 773 774 775
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

776
		blk_mq_start_request(rq, list_empty(&rq_list));
777 778 779 780 781 782 783 784

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
785
			__blk_mq_requeue_request(rq);
786 787 788 789
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
790
			rq->errors = -EIO;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

839 840
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
841
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
842 843
		return;

844
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
845
		__blk_mq_run_hw_queue(hctx);
846
	else if (hctx->queue->nr_hw_queues == 1)
847
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
848 849 850
	else {
		unsigned int cpu;

851
		cpu = blk_mq_hctx_next_cpu(hctx);
852
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
853
	}
854 855 856 857 858 859 860 861 862 863
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
864
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
865 866
			continue;

867
		preempt_disable();
868
		blk_mq_run_hw_queue(hctx, async);
869
		preempt_enable();
870 871 872 873 874 875
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
876 877
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
878 879 880 881
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

882 883 884 885 886 887 888 889 890 891
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

892 893 894
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
895 896

	preempt_disable();
897
	__blk_mq_run_hw_queue(hctx);
898
	preempt_enable();
899 900 901
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

902 903 904 905 906 907 908 909 910 911 912
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


913
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
914 915 916 917 918 919 920 921 922
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
923
		preempt_disable();
924
		blk_mq_run_hw_queue(hctx, async);
925
		preempt_enable();
926 927 928 929
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

930
static void blk_mq_run_work_fn(struct work_struct *work)
931 932 933
{
	struct blk_mq_hw_ctx *hctx;

934
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
935

936 937 938
	__blk_mq_run_hw_queue(hctx);
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

958
		cpu = blk_mq_hctx_next_cpu(hctx);
959 960 961 962 963
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

964
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
965
				    struct request *rq, bool at_head)
966 967 968
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

969 970
	trace_block_rq_insert(hctx->queue, rq);

971 972 973 974
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
975

976 977 978 979 980
	blk_mq_hctx_mark_pending(hctx, ctx);

	/*
	 * We do this early, to ensure we are on the right CPU.
	 */
981
	blk_add_timer(rq);
982 983
}

984 985
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
986
{
987
	struct request_queue *q = rq->q;
988
	struct blk_mq_hw_ctx *hctx;
989 990 991 992 993
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
994 995 996

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

997 998
	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
999 1000 1001
		blk_insert_flush(rq);
	} else {
		spin_lock(&ctx->lock);
1002
		__blk_mq_insert_request(hctx, rq, at_head);
1003 1004 1005 1006 1007
		spin_unlock(&ctx->lock);
	}

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1008 1009

	blk_mq_put_ctx(current_ctx);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1041
		__blk_mq_insert_request(hctx, rq, false);
1042 1043 1044 1045
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1046
	blk_mq_put_ctx(current_ctx);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1109 1110 1111 1112 1113

	if (blk_do_io_stat(rq)) {
		rq->start_time = jiffies;
		blk_account_io_start(rq, 1);
	}
1114 1115
}

1116 1117 1118
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1119
{
1120
	struct request_queue *q = hctx->queue;
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1135

1136 1137 1138
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1139
	}
1140
}
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1155

1156
	if (unlikely(blk_mq_queue_enter(q))) {
1157
		bio_endio(bio, -EIO);
1158
		return NULL;
1159 1160 1161 1162 1163
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1164
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1165
		rw |= REQ_SYNC;
1166

1167
	trace_block_getrq(q, bio, rw);
1168 1169
	rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
	if (unlikely(!rq)) {
1170
		__blk_mq_run_hw_queue(hctx);
1171 1172
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1173 1174

		ctx = blk_mq_get_ctx(q);
1175
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1176 1177
		rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
					    __GFP_WAIT|GFP_ATOMIC, false);
1178 1179 1180
	}

	hctx->queued++;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);
		blk_mq_start_request(rq, true);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
		ret = q->mq_ops->queue_rq(data.hctx, rq);
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
				blk_mq_end_io(rq, rq->errors);
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1301
			if (list_empty(&plug->mq_list))
1302 1303 1304 1305 1306 1307
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1308
			blk_mq_put_ctx(data.ctx);
1309 1310 1311 1312
			return;
		}
	}

1313 1314 1315 1316 1317 1318 1319 1320 1321
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1322 1323
	}

1324
	blk_mq_put_ctx(data.ctx);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1336 1337
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1338
{
1339
	struct page *page;
1340

1341
	if (tags->rqs && set->ops->exit_request) {
1342
		int i;
1343

1344 1345
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1346
				continue;
1347 1348
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1349
		}
1350 1351
	}

1352 1353
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1354
		list_del_init(&page->lru);
1355 1356 1357
		__free_pages(page, page->private);
	}

1358
	kfree(tags->rqs);
1359

1360
	blk_mq_free_tags(tags);
1361 1362 1363 1364
}

static size_t order_to_size(unsigned int order)
{
1365
	return (size_t)PAGE_SIZE << order;
1366 1367
}

1368 1369
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1370
{
1371
	struct blk_mq_tags *tags;
1372 1373 1374
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1375 1376 1377 1378
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1379

1380 1381 1382 1383 1384 1385 1386 1387
	INIT_LIST_HEAD(&tags->page_list);

	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
					GFP_KERNEL, set->numa_node);
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1388 1389 1390 1391 1392

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1393
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1394
				cache_line_size());
1395
	left = rq_size * set->queue_depth;
1396

1397
	for (i = 0; i < set->queue_depth; ) {
1398 1399 1400 1401 1402 1403 1404 1405 1406
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1407 1408
			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
						this_order);
1409 1410 1411 1412 1413 1414 1415 1416 1417
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1418
			goto fail;
1419 1420

		page->private = this_order;
1421
		list_add_tail(&page->lru, &tags->page_list);
1422 1423 1424

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1425
		to_do = min(entries_per_page, set->queue_depth - i);
1426 1427
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1428 1429 1430 1431 1432 1433
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
						set->numa_node))
					goto fail;
1434 1435
			}

1436 1437 1438 1439 1440
			p += rq_size;
			i++;
		}
	}

1441
	return tags;
1442

1443 1444 1445 1446
fail:
	pr_warn("%s: failed to allocate requests\n", __func__);
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

M
Ming Lei 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;

		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, i);

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
		blk_mq_free_bitmap(&hctx->ctx_map);
	}

}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1576
		kfree(hctx);
M
Ming Lei 已提交
1577 1578 1579
	}
}

1580
static int blk_mq_init_hw_queues(struct request_queue *q,
1581
		struct blk_mq_tag_set *set)
1582 1583
{
	struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
1584
	unsigned int i;
1585 1586 1587 1588 1589 1590 1591 1592 1593

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1594
			node = hctx->numa_node = set->numa_node;
1595

1596 1597
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1598 1599 1600 1601
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1602 1603
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1604 1605 1606 1607 1608

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1609
		hctx->tags = set->tags[i];
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

		/*
		 * Allocate space for all possible cpus to avoid allocation in
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

1620
		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1621 1622 1623 1624
			break;

		hctx->nr_ctx = 0;

1625 1626
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1627 1628 1629 1630 1631 1632 1633 1634 1635
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1636
	blk_mq_exit_hw_queues(q, set, i);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1660 1661 1662 1663
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1680
		cpumask_clear(hctx->cpumask);
1681 1682 1683 1684 1685 1686 1687 1688
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1689 1690 1691
		if (!cpu_online(i))
			continue;

1692
		hctx = q->mq_ops->map_queue(q, i);
1693
		cpumask_set_cpu(i, hctx->cpumask);
1694 1695 1696
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1697 1698

	queue_for_each_hw_ctx(q, hctx, i) {
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		/*
		 * If not software queues are mapped to this hardware queue,
		 * disable it and free the request entries
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1717 1718 1719
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1720 1721
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	blk_mq_freeze_queue(q);

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);

	blk_mq_unfreeze_queue(q);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1772
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1773 1774 1775 1776
{
	struct blk_mq_hw_ctx **hctxs;
	struct blk_mq_ctx *ctx;
	struct request_queue *q;
1777
	unsigned int *map;
1778 1779 1780 1781 1782 1783
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1784 1785
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1786 1787 1788 1789

	if (!hctxs)
		goto err_percpu;

1790 1791 1792 1793
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1794
	for (i = 0; i < set->nr_hw_queues; i++) {
1795 1796
		int node = blk_mq_hw_queue_to_node(map, i);

1797 1798
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1799 1800 1801
		if (!hctxs[i])
			goto err_hctxs;

1802 1803 1804
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1805
		atomic_set(&hctxs[i]->nr_active, 0);
1806
		hctxs[i]->numa_node = node;
1807 1808 1809
		hctxs[i]->queue_num = i;
	}

1810
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1811 1812 1813
	if (!q)
		goto err_hctxs;

1814 1815 1816
	if (percpu_counter_init(&q->mq_usage_counter, 0))
		goto err_map;

1817 1818 1819 1820
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1821
	q->nr_hw_queues = set->nr_hw_queues;
1822
	q->mq_map = map;
1823 1824 1825 1826

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1827
	q->mq_ops = set->ops;
1828
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1829

1830 1831 1832
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1833 1834
	q->sg_reserved_size = INT_MAX;

1835 1836 1837 1838
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1839 1840 1841 1842 1843
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1844
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1845 1846
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1847

1848 1849 1850 1851 1852
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1853 1854
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1855

1856
	blk_mq_init_flush(q);
1857
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1858

1859 1860 1861
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1862
	if (!q->flush_rq)
1863 1864
		goto err_hw;

1865
	if (blk_mq_init_hw_queues(q, set))
1866 1867
		goto err_flush_rq;

1868 1869 1870 1871
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1872 1873
	blk_mq_add_queue_tag_set(set, q);

1874 1875
	blk_mq_map_swqueue(q);

1876
	return q;
1877 1878 1879

err_flush_rq:
	kfree(q->flush_rq);
1880 1881 1882
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1883
	kfree(map);
1884
	for (i = 0; i < set->nr_hw_queues; i++) {
1885 1886
		if (!hctxs[i])
			break;
1887
		free_cpumask_var(hctxs[i]->cpumask);
1888
		kfree(hctxs[i]);
1889
	}
1890
err_map:
1891 1892 1893 1894 1895 1896 1897 1898 1899
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1900
	struct blk_mq_tag_set	*set = q->tag_set;
1901

1902 1903
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1904 1905
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1906

1907 1908
	percpu_counter_destroy(&q->mq_usage_counter);

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1923
static void blk_mq_queue_reinit(struct request_queue *q)
1924 1925 1926
{
	blk_mq_freeze_queue(q);

1927 1928
	blk_mq_sysfs_unregister(q);

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1939 1940
	blk_mq_sysfs_register(q);

1941 1942 1943
	blk_mq_unfreeze_queue(q);
}

1944 1945
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1946 1947 1948 1949
{
	struct request_queue *q;

	/*
1950 1951 1952 1953
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	if (!set->nr_hw_queues)
		return -EINVAL;
	if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

1977
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1978 1979 1980
		return -EINVAL;


M
Ming Lei 已提交
1981 1982
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
		goto out;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

1993 1994 1995
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);
out:
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2010 2011 2012 2013 2014
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2015
	kfree(set->tags);
2016 2017 2018
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

	/* Must be called after percpu_counter_hotcpu_callback() */
	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);

	return 0;
}
subsys_initcall(blk_mq_init);