blk-mq.c 38.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
					   unsigned int cpu)
{
	return per_cpu_ptr(q->queue_ctx, cpu);
}

/*
 * This assumes per-cpu software queueing queues. They could be per-node
 * as well, for instance. For now this is hardcoded as-is. Note that we don't
 * care about preemption, since we know the ctx's are persistent. This does
 * mean that we can't rely on ctx always matching the currently running CPU.
 */
static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
	return __blk_mq_get_ctx(q, get_cpu());
}

static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
{
	put_cpu();
}

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

	for (i = 0; i < hctx->nr_ctx_map; i++)
		if (hctx->ctx_map[i])
			return true;

	return false;
}

/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
	if (!test_bit(ctx->index_hw, hctx->ctx_map))
		set_bit(ctx->index_hw, hctx->ctx_map);
}

76 77
static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
					      gfp_t gfp, bool reserved)
78 79 80 81 82 83
{
	struct request *rq;
	unsigned int tag;

	tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
	if (tag != BLK_MQ_TAG_FAIL) {
84
		rq = hctx->tags->rqs[tag];
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
		rq->tag = tag;
		return rq;
	}

	return NULL;
}

static int blk_mq_queue_enter(struct request_queue *q)
{
	int ret;

	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	smp_wmb();
	/* we have problems to freeze the queue if it's initializing */
	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
		return 0;

	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);

	spin_lock_irq(q->queue_lock);
	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
106 107
		!blk_queue_bypass(q) || blk_queue_dying(q),
		*q->queue_lock);
108
	/* inc usage with lock hold to avoid freeze_queue runs here */
109
	if (!ret && !blk_queue_dying(q))
110
		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
111 112
	else if (blk_queue_dying(q))
		ret = -ENODEV;
113 114 115 116 117 118 119 120 121 122
	spin_unlock_irq(q->queue_lock);

	return ret;
}

static void blk_mq_queue_exit(struct request_queue *q)
{
	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static void __blk_mq_drain_queue(struct request_queue *q)
{
	while (true) {
		s64 count;

		spin_lock_irq(q->queue_lock);
		count = percpu_counter_sum(&q->mq_usage_counter);
		spin_unlock_irq(q->queue_lock);

		if (count == 0)
			break;
		blk_mq_run_queues(q, false);
		msleep(10);
	}
}

139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
static void blk_mq_freeze_queue(struct request_queue *q)
{
	bool drain;

	spin_lock_irq(q->queue_lock);
	drain = !q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

152 153 154
	if (drain)
		__blk_mq_drain_queue(q);
}
155

156 157 158
void blk_mq_drain_queue(struct request_queue *q)
{
	__blk_mq_drain_queue(q);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
}

static void blk_mq_unfreeze_queue(struct request_queue *q)
{
	bool wake = false;

	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth) {
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
		wake = true;
	}
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
	if (wake)
		wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

182 183
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
184
{
185 186 187
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

188 189 190
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
191 192
	rq->mq_ctx = ctx;
	rq->cmd_flags = rw_flags;
193 194 195 196 197 198 199 200 201 202 203 204
	rq->cmd_type = 0;
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = NULL;
	rq->biotail = NULL;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
	rq->rq_disk = NULL;
	rq->part = NULL;
205
	rq->start_time = jiffies;
206 207
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
208
	set_start_time_ns(rq);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->ioprio = 0;
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	memset(rq->__cmd, 0, sizeof(rq->__cmd));
	rq->cmd = rq->__cmd;
	rq->cmd_len = BLK_MAX_CDB;

	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	rq->deadline = 0;
	INIT_LIST_HEAD(&rq->timeout_list);
	rq->timeout = 0;
	rq->retries = 0;
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

236 237 238 239 240 241 242 243 244 245 246 247 248
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
						   int rw, gfp_t gfp,
						   bool reserved)
{
	struct request *rq;

	do {
		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);

249
		rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
250
		if (rq) {
251
			blk_mq_rq_ctx_init(q, ctx, rq, rw);
252
			break;
253
		}
254

255 256 257 258 259
		if (gfp & __GFP_WAIT) {
			__blk_mq_run_hw_queue(hctx);
			blk_mq_put_ctx(ctx);
		} else {
			blk_mq_put_ctx(ctx);
260
			break;
261
		}
262

263
		blk_mq_wait_for_tags(hctx->tags, reserved);
264 265 266 267 268
	} while (1);

	return rq;
}

269
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
270 271 272 273 274 275
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

276
	rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
277 278
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
279 280 281 282 283 284 285 286 287 288 289 290
	return rq;
}

struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
					      gfp_t gfp)
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

	rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
291 292
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
293 294 295 296 297 298 299 300 301 302
	return rq;
}
EXPORT_SYMBOL(blk_mq_alloc_reserved_request);

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

303
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	blk_mq_put_tag(hctx->tags, tag);
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

340
inline void __blk_mq_end_io(struct request *rq, int error)
341
{
M
Ming Lei 已提交
342 343
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
344
	if (rq->end_io) {
345
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
346 347 348
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
349
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
350
	}
351
}
352 353 354 355 356 357 358 359 360
EXPORT_SYMBOL(__blk_mq_end_io);

void blk_mq_end_io(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_io(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_io);
361

362
static void __blk_mq_complete_request_remote(void *data)
363
{
364
	struct request *rq = data;
365

366
	rq->q->softirq_done_fn(rq);
367 368
}

369
void __blk_mq_complete_request(struct request *rq)
370 371
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
372
	bool shared = false;
373 374
	int cpu;

C
Christoph Hellwig 已提交
375
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
376 377 378
		rq->q->softirq_done_fn(rq);
		return;
	}
379 380

	cpu = get_cpu();
C
Christoph Hellwig 已提交
381 382 383 384
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
385
		rq->csd.func = __blk_mq_complete_request_remote;
386 387
		rq->csd.info = rq;
		rq->csd.flags = 0;
388
		smp_call_function_single_async(ctx->cpu, &rq->csd);
389
	} else {
390
		rq->q->softirq_done_fn(rq);
391
	}
392 393
	put_cpu();
}
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
	if (unlikely(blk_should_fake_timeout(rq->q)))
		return;
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
}
EXPORT_SYMBOL(blk_mq_complete_request);
411

412
static void blk_mq_start_request(struct request *rq, bool last)
413 414 415 416 417
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
418
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
419 420
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
421

422 423 424 425 426 427
	/*
	 * Just mark start time and set the started bit. Due to memory
	 * ordering, we know we'll see the correct deadline as long as
	 * REQ_ATOMIC_STARTED is seen.
	 */
	rq->deadline = jiffies + q->rq_timeout;
428 429 430 431 432 433 434

	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
435
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
436
	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}

	/*
	 * Flag the last request in the series so that drivers know when IO
	 * should be kicked off, if they don't do it on a per-request basis.
	 *
	 * Note: the flag isn't the only condition drivers should do kick off.
	 * If drive is busy, the last request might not have the bit set.
	 */
	if (last)
		rq->cmd_flags |= REQ_END;
456 457
}

458
static void __blk_mq_requeue_request(struct request *rq)
459 460 461 462 463
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
464 465 466 467 468

	rq->cmd_flags &= ~REQ_END;

	if (q->dma_drain_size && blk_rq_bytes(rq))
		rq->nr_phys_segments--;
469 470
}

471 472 473 474 475 476 477 478 479 480
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
	blk_mq_insert_request(rq, true, true, false);
}
EXPORT_SYMBOL(blk_mq_requeue_request);

481 482 483 484 485 486
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	return tags->rqs[tag];
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

508 509
		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
		if (tag >= hctx->tags->nr_tags)
510 511
			break;

512 513 514
		rq = blk_mq_tag_to_rq(hctx->tags, tag++);
		if (rq->q != hctx->queue)
			continue;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
{
	struct request_queue *q = rq->q;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return BLK_EH_NOT_HANDLED;

	if (!q->mq_ops->timeout)
		return BLK_EH_RESET_TIMER;

	return q->mq_ops->timeout(rq);
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);

	if (next_set)
		mod_timer(&q->timeout, round_jiffies_up(next));
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	LIST_HEAD(rq_list);
	int bit, queued;

628
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
629

630
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
	for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
		clear_bit(bit, hctx->ctx_map);
		ctx = hctx->ctxs[bit];

		spin_lock(&ctx->lock);
		list_splice_tail_init(&ctx->rq_list, &rq_list);
		spin_unlock(&ctx->lock);
	}

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Delete and return all entries from our dispatch list
	 */
	queued = 0;

	/*
	 * Now process all the entries, sending them to the driver.
	 */
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

672
		blk_mq_start_request(rq, list_empty(&rq_list));
673 674 675 676 677 678 679 680 681 682 683 684 685

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			/*
			 * FIXME: we should have a mechanism to stop the queue
			 * like blk_stop_queue, otherwise we will waste cpu
			 * time
			 */
			list_add(&rq->queuelist, &rq_list);
686
			__blk_mq_requeue_request(rq);
687 688 689 690
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
691
			rq->errors = -EIO;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

740 741
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
742
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
743 744
		return;

745
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
746
		__blk_mq_run_hw_queue(hctx);
747
	else if (hctx->queue->nr_hw_queues == 1)
748
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
749 750 751
	else {
		unsigned int cpu;

752
		cpu = blk_mq_hctx_next_cpu(hctx);
753
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
754
	}
755 756 757 758 759 760 761 762 763 764
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
765
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
766 767
			continue;

768
		preempt_disable();
769
		blk_mq_run_hw_queue(hctx, async);
770
		preempt_enable();
771 772 773 774 775 776
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
777 778
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
779 780 781 782
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

783 784 785 786 787 788 789 790 791 792
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

793 794 795
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
796 797

	preempt_disable();
798
	__blk_mq_run_hw_queue(hctx);
799
	preempt_enable();
800 801 802
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

803 804 805 806 807 808 809 810 811 812 813
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


814
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
815 816 817 818 819 820 821 822 823
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
824
		preempt_disable();
825
		blk_mq_run_hw_queue(hctx, async);
826
		preempt_enable();
827 828 829 830
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

831
static void blk_mq_run_work_fn(struct work_struct *work)
832 833 834
{
	struct blk_mq_hw_ctx *hctx;

835
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
836

837 838 839
	__blk_mq_run_hw_queue(hctx);
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

859
		cpu = blk_mq_hctx_next_cpu(hctx);
860 861 862 863 864
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

865
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
866
				    struct request *rq, bool at_head)
867 868 869
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

870 871
	trace_block_rq_insert(hctx->queue, rq);

872 873 874 875
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
876 877 878 879 880
	blk_mq_hctx_mark_pending(hctx, ctx);

	/*
	 * We do this early, to ensure we are on the right CPU.
	 */
881
	blk_add_timer(rq);
882 883
}

884 885
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
886
{
887
	struct request_queue *q = rq->q;
888
	struct blk_mq_hw_ctx *hctx;
889 890 891 892 893
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
894 895 896

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

897 898
	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
899 900 901
		blk_insert_flush(rq);
	} else {
		spin_lock(&ctx->lock);
902
		__blk_mq_insert_request(hctx, rq, at_head);
903 904 905 906 907
		spin_unlock(&ctx->lock);
	}

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
908 909

	blk_mq_put_ctx(current_ctx);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
941
		__blk_mq_insert_request(hctx, rq, false);
942 943 944 945
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
946
	blk_mq_put_ctx(current_ctx);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
	blk_account_io_start(rq, 1);
}

static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	int rw = bio_data_dir(bio);
	struct request *rq;
	unsigned int use_plug, request_count = 0;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);

	blk_queue_bounce(q, &bio);

1030 1031 1032 1033 1034
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
		return;

	if (blk_mq_queue_enter(q)) {
		bio_endio(bio, -EIO);
		return;
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

S
Shaohua Li 已提交
1046 1047
	if (is_sync)
		rw |= REQ_SYNC;
1048
	trace_block_getrq(q, bio, rw);
1049
	rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
1050
	if (likely(rq))
1051
		blk_mq_rq_ctx_init(q, ctx, rq, rw);
1052 1053 1054
	else {
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1055 1056
		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
							false);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		ctx = rq->mq_ctx;
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
	}

	hctx->queued++;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1079
			if (list_empty(&plug->mq_list))
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
			blk_mq_put_ctx(ctx);
			return;
		}
	}

1091 1092
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
		init_request_from_bio(rq, bio);
1093

1094 1095
		spin_lock(&ctx->lock);
insert_rq:
1096
		__blk_mq_insert_request(hctx, rq, false);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		spin_unlock(&ctx->lock);
		blk_account_io_start(rq, 1);
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			init_request_from_bio(rq, bio);
			goto insert_rq;
		}

		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	}


	/*
	 * For a SYNC request, send it to the hardware immediately. For an
	 * ASYNC request, just ensure that we run it later on. The latter
	 * allows for merging opportunities and more efficient dispatching.
	 */
run_queue:
	blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1118
	blk_mq_put_ctx(ctx);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1130
struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1131 1132 1133
						   unsigned int hctx_index)
{
	return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1134
				GFP_KERNEL | __GFP_ZERO, set->numa_node);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
}
EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);

void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
				 unsigned int hctx_index)
{
	kfree(hctx);
}
EXPORT_SYMBOL(blk_mq_free_single_hw_queue);

static void blk_mq_hctx_notify(void *data, unsigned long action,
			       unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;
1149
	struct request_queue *q = hctx->queue;
1150 1151 1152 1153 1154 1155 1156 1157 1158
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
		return;

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
1159
	ctx = __blk_mq_get_ctx(q, cpu);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		clear_bit(ctx->index_hw, hctx->ctx_map);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return;

1171
	ctx = blk_mq_get_ctx(q);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

1182
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1183 1184 1185
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);
1186 1187

	blk_mq_run_hw_queue(hctx, true);
1188
	blk_mq_put_ctx(ctx);
1189 1190
}

1191 1192
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1193
{
1194
	struct page *page;
1195

1196
	if (tags->rqs && set->ops->exit_request) {
1197
		int i;
1198

1199 1200
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1201
				continue;
1202 1203
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1204
		}
1205 1206
	}

1207 1208
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1209
		list_del_init(&page->lru);
1210 1211 1212
		__free_pages(page, page->private);
	}

1213
	kfree(tags->rqs);
1214

1215
	blk_mq_free_tags(tags);
1216 1217 1218 1219
}

static size_t order_to_size(unsigned int order)
{
1220
	return (size_t)PAGE_SIZE << order;
1221 1222
}

1223 1224
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1225
{
1226
	struct blk_mq_tags *tags;
1227 1228 1229
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1230 1231 1232 1233
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1234

1235 1236 1237 1238 1239 1240 1241 1242
	INIT_LIST_HEAD(&tags->page_list);

	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
					GFP_KERNEL, set->numa_node);
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1243 1244 1245 1246 1247

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1248
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1249
				cache_line_size());
1250
	left = rq_size * set->queue_depth;
1251

1252
	for (i = 0; i < set->queue_depth; ) {
1253 1254 1255 1256 1257 1258 1259 1260 1261
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1262 1263
			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
						this_order);
1264 1265 1266 1267 1268 1269 1270 1271 1272
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1273
			goto fail;
1274 1275

		page->private = this_order;
1276
		list_add_tail(&page->lru, &tags->page_list);
1277 1278 1279

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1280
		to_do = min(entries_per_page, set->queue_depth - i);
1281 1282
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1283 1284 1285 1286 1287 1288
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
						set->numa_node))
					goto fail;
1289 1290
			}

1291 1292 1293 1294 1295
			p += rq_size;
			i++;
		}
	}

1296
	return tags;
1297

1298 1299 1300 1301
fail:
	pr_warn("%s: failed to allocate requests\n", __func__);
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1302 1303 1304
}

static int blk_mq_init_hw_queues(struct request_queue *q,
1305
		struct blk_mq_tag_set *set)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i, j;

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		unsigned int num_maps;
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1319
			node = hctx->numa_node = set->numa_node;
1320

1321 1322
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1323 1324 1325 1326
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1327 1328
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1329 1330 1331 1332 1333

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1334
		hctx->tags = set->tags[i];
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

		/*
		 * Allocate space for all possible cpus to avoid allocation in
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

		num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
		hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
						GFP_KERNEL, node);
		if (!hctx->ctx_map)
			break;

		hctx->nr_ctx_map = num_maps;
		hctx->nr_ctx = 0;

1354 1355
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
	queue_for_each_hw_ctx(q, hctx, j) {
		if (i == j)
			break;

1369 1370
		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, j);
1371 1372 1373

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
1374
		kfree(hctx->ctx_map);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	}

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1399 1400 1401 1402
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1419
		cpumask_clear(hctx->cpumask);
1420 1421 1422 1423 1424 1425 1426 1427
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1428 1429 1430
		if (!cpu_online(i))
			continue;

1431
		hctx = q->mq_ops->map_queue(q, i);
1432
		cpumask_set_cpu(i, hctx->cpumask);
1433 1434 1435
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1436 1437 1438 1439 1440

	queue_for_each_hw_ctx(q, hctx, i) {
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1441 1442
}

1443
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
{
	struct blk_mq_hw_ctx **hctxs;
	struct blk_mq_ctx *ctx;
	struct request_queue *q;
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1454 1455
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1456 1457 1458 1459

	if (!hctxs)
		goto err_percpu;

1460 1461
	for (i = 0; i < set->nr_hw_queues; i++) {
		hctxs[i] = set->ops->alloc_hctx(set, i);
1462 1463 1464
		if (!hctxs[i])
			goto err_hctxs;

1465 1466 1467
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1468 1469 1470 1471
		hctxs[i]->numa_node = NUMA_NO_NODE;
		hctxs[i]->queue_num = i;
	}

1472
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1473 1474 1475
	if (!q)
		goto err_hctxs;

1476
	q->mq_map = blk_mq_make_queue_map(set);
1477 1478 1479 1480 1481 1482 1483
	if (!q->mq_map)
		goto err_map;

	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1484
	q->nr_hw_queues = set->nr_hw_queues;
1485 1486 1487 1488

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1489
	q->mq_ops = set->ops;
1490
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1491

1492 1493
	q->sg_reserved_size = INT_MAX;

1494
	blk_queue_make_request(q, blk_mq_make_request);
1495
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1496 1497
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1498

1499 1500
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1501

1502
	blk_mq_init_flush(q);
1503
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1504

1505 1506 1507
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1508
	if (!q->flush_rq)
1509 1510
		goto err_hw;

1511
	if (blk_mq_init_hw_queues(q, set))
1512 1513
		goto err_flush_rq;

1514 1515 1516 1517 1518 1519 1520
	blk_mq_map_swqueue(q);

	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

	return q;
1521 1522 1523

err_flush_rq:
	kfree(q->flush_rq);
1524 1525 1526 1527 1528
err_hw:
	kfree(q->mq_map);
err_map:
	blk_cleanup_queue(q);
err_hctxs:
1529
	for (i = 0; i < set->nr_hw_queues; i++) {
1530 1531
		if (!hctxs[i])
			break;
1532
		free_cpumask_var(hctxs[i]->cpumask);
1533
		set->ops->free_hctx(hctxs[i], i);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	}
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		kfree(hctx->ctx_map);
		kfree(hctx->ctxs);
		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		if (q->mq_ops->exit_hctx)
			q->mq_ops->exit_hctx(hctx, i);
1553
		free_cpumask_var(hctx->cpumask);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		q->mq_ops->free_hctx(hctx, i);
	}

	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1571
static void blk_mq_queue_reinit(struct request_queue *q)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
{
	blk_mq_freeze_queue(q);

	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

	blk_mq_unfreeze_queue(q);
}

1588 1589
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1590 1591 1592 1593
{
	struct request_queue *q;

	/*
1594 1595 1596 1597
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	if (!set->nr_hw_queues)
		return -EINVAL;
	if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

	if (!set->nr_hw_queues ||
	    !set->ops->queue_rq || !set->ops->map_queue ||
	    !set->ops->alloc_hctx || !set->ops->free_hctx)
		return -EINVAL;


M
Ming Lei 已提交
1627 1628
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
		goto out;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);
out:
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++)
		blk_mq_free_rq_map(set, set->tags[i], i);
M
Ming Lei 已提交
1655
	kfree(set->tags);
1656 1657 1658
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

	/* Must be called after percpu_counter_hotcpu_callback() */
	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);

	return 0;
}
subsys_initcall(blk_mq_init);