blk-mq.c 47.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
					   unsigned int cpu)
{
	return per_cpu_ptr(q->queue_ctx, cpu);
}

/*
 * This assumes per-cpu software queueing queues. They could be per-node
 * as well, for instance. For now this is hardcoded as-is. Note that we don't
 * care about preemption, since we know the ctx's are persistent. This does
 * mean that we can't rely on ctx always matching the currently running CPU.
 */
static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
	return __blk_mq_get_ctx(q, get_cpu());
}

static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
{
	put_cpu();
}

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

59 60
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
61 62 63 64 65
			return true;

	return false;
}

66 67 68 69 70 71 72 73 74
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

75 76 77 78 79 80
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
81 82 83 84 85 86 87 88 89 90 91 92
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 94
}

95
static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
96
					      struct blk_mq_ctx *ctx,
97
					      gfp_t gfp, bool reserved)
98 99 100 101
{
	struct request *rq;
	unsigned int tag;

102
	tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
103
	if (tag != BLK_MQ_TAG_FAIL) {
104
		rq = hctx->tags->rqs[tag];
105 106 107 108 109 110 111

		rq->cmd_flags = 0;
		if (blk_mq_tag_busy(hctx)) {
			rq->cmd_flags = REQ_MQ_INFLIGHT;
			atomic_inc(&hctx->nr_active);
		}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
		rq->tag = tag;
		return rq;
	}

	return NULL;
}

static int blk_mq_queue_enter(struct request_queue *q)
{
	int ret;

	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	smp_wmb();
	/* we have problems to freeze the queue if it's initializing */
	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
		return 0;

	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);

	spin_lock_irq(q->queue_lock);
	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
133 134
		!blk_queue_bypass(q) || blk_queue_dying(q),
		*q->queue_lock);
135
	/* inc usage with lock hold to avoid freeze_queue runs here */
136
	if (!ret && !blk_queue_dying(q))
137
		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
138 139
	else if (blk_queue_dying(q))
		ret = -ENODEV;
140 141 142 143 144 145 146 147 148 149
	spin_unlock_irq(q->queue_lock);

	return ret;
}

static void blk_mq_queue_exit(struct request_queue *q)
{
	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static void __blk_mq_drain_queue(struct request_queue *q)
{
	while (true) {
		s64 count;

		spin_lock_irq(q->queue_lock);
		count = percpu_counter_sum(&q->mq_usage_counter);
		spin_unlock_irq(q->queue_lock);

		if (count == 0)
			break;
		blk_mq_run_queues(q, false);
		msleep(10);
	}
}

166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
static void blk_mq_freeze_queue(struct request_queue *q)
{
	bool drain;

	spin_lock_irq(q->queue_lock);
	drain = !q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

179 180 181
	if (drain)
		__blk_mq_drain_queue(q);
}
182

183 184 185
void blk_mq_drain_queue(struct request_queue *q)
{
	__blk_mq_drain_queue(q);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

static void blk_mq_unfreeze_queue(struct request_queue *q)
{
	bool wake = false;

	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth) {
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
		wake = true;
	}
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
	if (wake)
		wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

209 210
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
211
{
212 213 214
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

215 216 217
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
218
	rq->mq_ctx = ctx;
219
	rq->cmd_flags |= rw_flags;
220 221 222 223 224 225 226 227 228 229 230 231
	rq->cmd_type = 0;
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = NULL;
	rq->biotail = NULL;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
	rq->rq_disk = NULL;
	rq->part = NULL;
232
	rq->start_time = jiffies;
233 234
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
235
	set_start_time_ns(rq);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->ioprio = 0;
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	memset(rq->__cmd, 0, sizeof(rq->__cmd));
	rq->cmd = rq->__cmd;
	rq->cmd_len = BLK_MAX_CDB;

	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	rq->deadline = 0;
	INIT_LIST_HEAD(&rq->timeout_list);
	rq->timeout = 0;
	rq->retries = 0;
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

263 264 265 266 267 268 269 270 271 272 273 274 275
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
						   int rw, gfp_t gfp,
						   bool reserved)
{
	struct request *rq;

	do {
		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);

276 277
		rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
						reserved);
278
		if (rq) {
279
			blk_mq_rq_ctx_init(q, ctx, rq, rw);
280
			break;
281
		}
282

283 284 285 286 287
		if (gfp & __GFP_WAIT) {
			__blk_mq_run_hw_queue(hctx);
			blk_mq_put_ctx(ctx);
		} else {
			blk_mq_put_ctx(ctx);
288
			break;
289
		}
290

291
		blk_mq_wait_for_tags(hctx, reserved);
292 293 294 295 296
	} while (1);

	return rq;
}

297 298
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
299 300 301 302 303 304
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

305
	rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
306 307
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
308 309
	return rq;
}
310
EXPORT_SYMBOL(blk_mq_alloc_request);
311 312 313 314 315 316 317

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

318 319 320
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);

321
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
322
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

358
inline void __blk_mq_end_io(struct request *rq, int error)
359
{
M
Ming Lei 已提交
360 361
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
362
	if (rq->end_io) {
363
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
364 365 366
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
367
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
368
	}
369
}
370 371 372 373 374 375 376 377 378
EXPORT_SYMBOL(__blk_mq_end_io);

void blk_mq_end_io(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_io(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_io);
379

380
static void __blk_mq_complete_request_remote(void *data)
381
{
382
	struct request *rq = data;
383

384
	rq->q->softirq_done_fn(rq);
385 386
}

387
void __blk_mq_complete_request(struct request *rq)
388 389
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
390
	bool shared = false;
391 392
	int cpu;

C
Christoph Hellwig 已提交
393
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
394 395 396
		rq->q->softirq_done_fn(rq);
		return;
	}
397 398

	cpu = get_cpu();
C
Christoph Hellwig 已提交
399 400 401 402
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
403
		rq->csd.func = __blk_mq_complete_request_remote;
404 405
		rq->csd.info = rq;
		rq->csd.flags = 0;
406
		smp_call_function_single_async(ctx->cpu, &rq->csd);
407
	} else {
408
		rq->q->softirq_done_fn(rq);
409
	}
410 411
	put_cpu();
}
412 413 414 415 416 417 418 419 420 421 422

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
423 424 425
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
426
		return;
427 428 429 430 431 432
	if (!blk_mark_rq_complete(rq)) {
		if (q->softirq_done_fn)
			__blk_mq_complete_request(rq);
		else
			blk_mq_end_io(rq, rq->errors);
	}
433 434
}
EXPORT_SYMBOL(blk_mq_complete_request);
435

436
static void blk_mq_start_request(struct request *rq, bool last)
437 438 439 440 441
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
442
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
443 444
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
445

446 447 448
	/*
	 * Just mark start time and set the started bit. Due to memory
	 * ordering, we know we'll see the correct deadline as long as
449 450
	 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
	 * unless one has been set in the request.
451
	 */
452 453 454 455
	if (!rq->timeout)
		rq->deadline = jiffies + q->rq_timeout;
	else
		rq->deadline = jiffies + rq->timeout;
456 457 458 459 460 461 462

	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
463
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
464
	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}

	/*
	 * Flag the last request in the series so that drivers know when IO
	 * should be kicked off, if they don't do it on a per-request basis.
	 *
	 * Note: the flag isn't the only condition drivers should do kick off.
	 * If drive is busy, the last request might not have the bit set.
	 */
	if (last)
		rq->cmd_flags |= REQ_END;
484 485
}

486
static void __blk_mq_requeue_request(struct request *rq)
487 488 489 490 491
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
492 493 494 495 496

	rq->cmd_flags &= ~REQ_END;

	if (q->dma_drain_size && blk_rq_bytes(rq))
		rq->nr_phys_segments--;
497 498
}

499 500 501 502 503 504
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
505
	blk_mq_add_to_requeue_list(rq, true);
506 507 508
}
EXPORT_SYMBOL(blk_mq_requeue_request);

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

	blk_mq_run_queues(q, false);
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

567 568 569 570 571 572
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	return tags->rqs[tag];
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

594 595
		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
		if (tag >= hctx->tags->nr_tags)
596 597
			break;

598 599 600
		rq = blk_mq_tag_to_rq(hctx->tags, tag++);
		if (rq->q != hctx->queue)
			continue;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
{
	struct request_queue *q = rq->q;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return BLK_EH_NOT_HANDLED;

	if (!q->mq_ops->timeout)
		return BLK_EH_RESET_TIMER;

	return q->mq_ops->timeout(rq);
}

647 648 649 650 651 652 653
static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

654 655 656 657 658 659 660 661
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

662
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
663
	}
664

665 666 667 668 669 670 671
	if (next_set) {
		next = blk_rq_timeout(round_jiffies_up(next));
		mod_timer(&q->timeout, next);
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

747 748 749 750 751 752 753 754 755 756 757
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
758
	int queued;
759

760
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
761

762
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
763 764 765 766 767 768 769
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
770
	flush_busy_ctxs(hctx, &rq_list);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
786
	queued = 0;
787 788 789 790 791 792
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

793
		blk_mq_start_request(rq, list_empty(&rq_list));
794 795 796 797 798 799 800 801

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
802
			__blk_mq_requeue_request(rq);
803 804 805 806
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
807
			rq->errors = -EIO;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

856 857
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
858
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
859 860
		return;

861
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
862
		__blk_mq_run_hw_queue(hctx);
863
	else if (hctx->queue->nr_hw_queues == 1)
864
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
865 866 867
	else {
		unsigned int cpu;

868
		cpu = blk_mq_hctx_next_cpu(hctx);
869
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
870
	}
871 872 873 874 875 876 877 878 879 880
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
881
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
882 883
			continue;

884
		preempt_disable();
885
		blk_mq_run_hw_queue(hctx, async);
886
		preempt_enable();
887 888 889 890 891 892
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
893 894
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
895 896 897 898
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

899 900 901 902 903 904 905 906 907 908
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

909 910 911
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
912 913

	preempt_disable();
914
	__blk_mq_run_hw_queue(hctx);
915
	preempt_enable();
916 917 918
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

919 920 921 922 923 924 925 926 927 928 929
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


930
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
931 932 933 934 935 936 937 938 939
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
940
		preempt_disable();
941
		blk_mq_run_hw_queue(hctx, async);
942
		preempt_enable();
943 944 945 946
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

947
static void blk_mq_run_work_fn(struct work_struct *work)
948 949 950
{
	struct blk_mq_hw_ctx *hctx;

951
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
952

953 954 955
	__blk_mq_run_hw_queue(hctx);
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

975
		cpu = blk_mq_hctx_next_cpu(hctx);
976 977 978 979 980
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

981
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
982
				    struct request *rq, bool at_head)
983 984 985
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

986 987
	trace_block_rq_insert(hctx->queue, rq);

988 989 990 991
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
992

993 994 995 996 997
	blk_mq_hctx_mark_pending(hctx, ctx);

	/*
	 * We do this early, to ensure we are on the right CPU.
	 */
998
	blk_add_timer(rq);
999 1000
}

1001 1002
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1003
{
1004
	struct request_queue *q = rq->q;
1005
	struct blk_mq_hw_ctx *hctx;
1006 1007 1008 1009 1010
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1011 1012 1013

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1014 1015
	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
1016 1017 1018
		blk_insert_flush(rq);
	} else {
		spin_lock(&ctx->lock);
1019
		__blk_mq_insert_request(hctx, rq, at_head);
1020 1021 1022 1023 1024
		spin_unlock(&ctx->lock);
	}

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1025 1026

	blk_mq_put_ctx(current_ctx);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1058
		__blk_mq_insert_request(hctx, rq, false);
1059 1060 1061 1062
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1063
	blk_mq_put_ctx(current_ctx);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
	blk_account_io_start(rq, 1);
}

1129 1130 1131
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1132
{
1133
	struct request_queue *q = hctx->queue;
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1148

1149 1150 1151
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1152
	}
1153
}
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1168

1169
	if (unlikely(blk_mq_queue_enter(q))) {
1170
		bio_endio(bio, -EIO);
1171
		return NULL;
1172 1173 1174 1175 1176
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1177
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1178
		rw |= REQ_SYNC;
1179

1180
	trace_block_getrq(q, bio, rw);
1181
	rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
1182
	if (likely(rq))
1183
		blk_mq_rq_ctx_init(q, ctx, rq, rw);
1184 1185 1186
	else {
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1187 1188
		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
							false);
1189 1190 1191 1192 1193
		ctx = rq->mq_ctx;
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
	}

	hctx->queued++;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);
		blk_mq_start_request(rq, true);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
		ret = q->mq_ops->queue_rq(data.hctx, rq);
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
				blk_mq_end_io(rq, rq->errors);
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1314
			if (list_empty(&plug->mq_list))
1315 1316 1317 1318 1319 1320
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1321
			blk_mq_put_ctx(data.ctx);
1322 1323 1324 1325
			return;
		}
	}

1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1335 1336
	}

1337
	blk_mq_put_ctx(data.ctx);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1349
struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1350 1351
						   unsigned int hctx_index,
						   int node)
1352
{
1353
	return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL, node);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
}
EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);

void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
				 unsigned int hctx_index)
{
	kfree(hctx);
}
EXPORT_SYMBOL(blk_mq_free_single_hw_queue);

1364 1365
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1366
{
1367
	struct page *page;
1368

1369
	if (tags->rqs && set->ops->exit_request) {
1370
		int i;
1371

1372 1373
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1374
				continue;
1375 1376
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1377
		}
1378 1379
	}

1380 1381
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1382
		list_del_init(&page->lru);
1383 1384 1385
		__free_pages(page, page->private);
	}

1386
	kfree(tags->rqs);
1387

1388
	blk_mq_free_tags(tags);
1389 1390 1391 1392
}

static size_t order_to_size(unsigned int order)
{
1393
	return (size_t)PAGE_SIZE << order;
1394 1395
}

1396 1397
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1398
{
1399
	struct blk_mq_tags *tags;
1400 1401 1402
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1403 1404 1405 1406
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1407

1408 1409 1410 1411 1412 1413 1414 1415
	INIT_LIST_HEAD(&tags->page_list);

	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
					GFP_KERNEL, set->numa_node);
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1416 1417 1418 1419 1420

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1421
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1422
				cache_line_size());
1423
	left = rq_size * set->queue_depth;
1424

1425
	for (i = 0; i < set->queue_depth; ) {
1426 1427 1428 1429 1430 1431 1432 1433 1434
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1435 1436
			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
						this_order);
1437 1438 1439 1440 1441 1442 1443 1444 1445
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1446
			goto fail;
1447 1448

		page->private = this_order;
1449
		list_add_tail(&page->lru, &tags->page_list);
1450 1451 1452

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1453
		to_do = min(entries_per_page, set->queue_depth - i);
1454 1455
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1456 1457 1458 1459 1460 1461
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
						set->numa_node))
					goto fail;
1462 1463
			}

1464 1465 1466 1467 1468
			p += rq_size;
			i++;
		}
	}

1469
	return tags;
1470

1471 1472 1473 1474
fail:
	pr_warn("%s: failed to allocate requests\n", __func__);
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1475 1476
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

M
Ming Lei 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;

		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, i);

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
		blk_mq_free_bitmap(&hctx->ctx_map);
	}

}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
		set->ops->free_hctx(hctx, i);
	}
}

1608
static int blk_mq_init_hw_queues(struct request_queue *q,
1609
		struct blk_mq_tag_set *set)
1610 1611
{
	struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
1612
	unsigned int i;
1613 1614 1615 1616 1617 1618 1619 1620 1621

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1622
			node = hctx->numa_node = set->numa_node;
1623

1624 1625
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1626 1627 1628 1629
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1630 1631
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1632 1633 1634 1635 1636

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1637
		hctx->tags = set->tags[i];
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

		/*
		 * Allocate space for all possible cpus to avoid allocation in
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

1648
		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1649 1650 1651 1652
			break;

		hctx->nr_ctx = 0;

1653 1654
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1655 1656 1657 1658 1659 1660 1661 1662 1663
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1664
	blk_mq_exit_hw_queues(q, set, i);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1688 1689 1690 1691
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1708
		cpumask_clear(hctx->cpumask);
1709 1710 1711 1712 1713 1714 1715 1716
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1717 1718 1719
		if (!cpu_online(i))
			continue;

1720
		hctx = q->mq_ops->map_queue(q, i);
1721
		cpumask_set_cpu(i, hctx->cpumask);
1722 1723 1724
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1725 1726

	queue_for_each_hw_ctx(q, hctx, i) {
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
		/*
		 * If not software queues are mapped to this hardware queue,
		 * disable it and free the request entries
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1745 1746 1747
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	blk_mq_freeze_queue(q);

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);

	blk_mq_unfreeze_queue(q);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1800
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1801 1802 1803 1804
{
	struct blk_mq_hw_ctx **hctxs;
	struct blk_mq_ctx *ctx;
	struct request_queue *q;
1805
	unsigned int *map;
1806 1807 1808 1809 1810 1811
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1812 1813
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1814 1815 1816 1817

	if (!hctxs)
		goto err_percpu;

1818 1819 1820 1821
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1822
	for (i = 0; i < set->nr_hw_queues; i++) {
1823 1824 1825
		int node = blk_mq_hw_queue_to_node(map, i);

		hctxs[i] = set->ops->alloc_hctx(set, i, node);
1826 1827 1828
		if (!hctxs[i])
			goto err_hctxs;

1829 1830 1831
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1832
		atomic_set(&hctxs[i]->nr_active, 0);
1833
		hctxs[i]->numa_node = node;
1834 1835 1836
		hctxs[i]->queue_num = i;
	}

1837
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1838 1839 1840
	if (!q)
		goto err_hctxs;

1841 1842 1843
	if (percpu_counter_init(&q->mq_usage_counter, 0))
		goto err_map;

1844 1845 1846 1847
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1848
	q->nr_hw_queues = set->nr_hw_queues;
1849
	q->mq_map = map;
1850 1851 1852 1853

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1854
	q->mq_ops = set->ops;
1855
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1856

1857 1858
	q->sg_reserved_size = INT_MAX;

1859 1860 1861 1862
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1863 1864 1865 1866 1867
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1868
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1869 1870
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1871

1872 1873 1874 1875 1876
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1877 1878
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1879

1880
	blk_mq_init_flush(q);
1881
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1882

1883 1884 1885
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1886
	if (!q->flush_rq)
1887 1888
		goto err_hw;

1889
	if (blk_mq_init_hw_queues(q, set))
1890 1891
		goto err_flush_rq;

1892 1893 1894 1895
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1896 1897
	blk_mq_add_queue_tag_set(set, q);

1898 1899
	blk_mq_map_swqueue(q);

1900
	return q;
1901 1902 1903

err_flush_rq:
	kfree(q->flush_rq);
1904 1905 1906
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1907
	kfree(map);
1908
	for (i = 0; i < set->nr_hw_queues; i++) {
1909 1910
		if (!hctxs[i])
			break;
1911
		free_cpumask_var(hctxs[i]->cpumask);
1912
		set->ops->free_hctx(hctxs[i], i);
1913
	}
1914
err_map:
1915 1916 1917 1918 1919 1920 1921 1922 1923
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1924
	struct blk_mq_tag_set	*set = q->tag_set;
1925

1926 1927
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1928 1929
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1930

1931 1932
	percpu_counter_destroy(&q->mq_usage_counter);

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1947
static void blk_mq_queue_reinit(struct request_queue *q)
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
{
	blk_mq_freeze_queue(q);

	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

	blk_mq_unfreeze_queue(q);
}

1964 1965
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1966 1967 1968 1969
{
	struct request_queue *q;

	/*
1970 1971 1972 1973
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	if (!set->nr_hw_queues)
		return -EINVAL;
	if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

	if (!set->nr_hw_queues ||
	    !set->ops->queue_rq || !set->ops->map_queue ||
	    !set->ops->alloc_hctx || !set->ops->free_hctx)
		return -EINVAL;


M
Ming Lei 已提交
2003 2004
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
		goto out;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

2015 2016 2017
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);
out:
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2032 2033 2034 2035 2036
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2037
	kfree(set->tags);
2038 2039 2040
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

	/* Must be called after percpu_counter_hotcpu_callback() */
	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);

	return 0;
}
subsys_initcall(blk_mq_init);