amd_iommu.c 45.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24 25
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
26 27 28
#ifdef CONFIG_IOMMU_API
#include <linux/iommu.h>
#endif
29
#include <asm/proto.h>
30
#include <asm/iommu.h>
31
#include <asm/gart.h>
32
#include <asm/amd_iommu_types.h>
33
#include <asm/amd_iommu.h>
34 35 36

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

37 38
#define EXIT_LOOP_COUNT 10000000

39 40
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

41 42 43 44
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

45 46 47 48
#ifdef CONFIG_IOMMU_API
static struct iommu_ops amd_iommu_ops;
#endif

49 50 51
/*
 * general struct to manage commands send to an IOMMU
 */
52
struct iommu_cmd {
53 54 55
	u32 data[4];
};

56 57
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
58 59
static struct dma_ops_domain *find_protection_domain(u16 devid);

60

61 62 63 64 65 66
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

67
DECLARE_STATS_COUNTER(compl_wait);
68
DECLARE_STATS_COUNTER(cnt_map_single);
69
DECLARE_STATS_COUNTER(cnt_unmap_single);
70
DECLARE_STATS_COUNTER(cnt_map_sg);
71
DECLARE_STATS_COUNTER(cnt_unmap_sg);
72
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
73
DECLARE_STATS_COUNTER(cnt_free_coherent);
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
99 100

	amd_iommu_stats_add(&compl_wait);
101
	amd_iommu_stats_add(&cnt_map_single);
102
	amd_iommu_stats_add(&cnt_unmap_single);
103
	amd_iommu_stats_add(&cnt_map_sg);
104
	amd_iommu_stats_add(&cnt_unmap_sg);
105
	amd_iommu_stats_add(&cnt_alloc_coherent);
106
	amd_iommu_stats_add(&cnt_free_coherent);
107 108 109 110
}

#endif

111
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
112 113
static int iommu_has_npcache(struct amd_iommu *iommu)
{
114
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
115 116
}

117 118 119 120 121 122
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

203 204
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
205 206 207 208 209 210
	struct amd_iommu *iommu;

	list_for_each_entry(iommu, &amd_iommu_list, list)
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
211 212
}

213 214 215 216 217 218 219 220 221 222
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
223
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
224 225 226 227 228
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
229
	target = iommu->cmd_buf + tail;
230 231 232 233 234 235 236 237 238 239
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

240 241 242 243
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
244
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
245 246 247 248 249 250
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
251
	if (!ret)
252
		iommu->need_sync = true;
253 254 255 256 257
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

258 259 260 261 262 263 264 265 266 267
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

268 269
	INC_STATS_COUNTER(compl_wait);

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

300 301 302 303 304 305 306
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
307 308
static int iommu_completion_wait(struct amd_iommu *iommu)
{
309 310
	int ret = 0;
	unsigned long flags;
311

312 313
	spin_lock_irqsave(&iommu->lock, flags);

314 315 316
	if (!iommu->need_sync)
		goto out;

317
	ret = __iommu_completion_wait(iommu);
318

319
	iommu->need_sync = false;
320 321

	if (ret)
322
		goto out;
323

324
	__iommu_wait_for_completion(iommu);
325

326 327
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
328 329 330 331

	return 0;
}

332 333 334
/*
 * Command send function for invalidating a device table entry
 */
335 336
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
337
	struct iommu_cmd cmd;
338
	int ret;
339 340 341 342 343 344 345

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

346 347 348
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
349 350
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

366 367 368
/*
 * Generic command send function for invalidaing TLB entries
 */
369 370 371
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
372
	struct iommu_cmd cmd;
373
	int ret;
374

375
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
376

377 378 379
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
380 381
}

382 383 384 385 386
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
387 388 389
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
390
	int s = 0;
391
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
392 393 394

	address &= PAGE_MASK;

395 396 397 398 399 400 401
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
402 403
	}

404 405
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

406 407
	return 0;
}
408

409 410 411 412 413 414 415 416
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
#ifdef CONFIG_IOMMU_API
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}
#endif

441 442 443 444 445 446 447 448 449 450 451 452 453 454
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
455 456 457 458
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
459 460 461 462
{
	u64 __pte, *pte, *page;

	bus_addr  = PAGE_ALIGN(bus_addr);
463
	phys_addr = PAGE_ALIGN(phys_addr);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
#ifdef CONFIG_IOMMU_API
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}
#endif

529 530 531 532
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
533 534 535 536 537 538 539 540 541 542 543 544 545 546
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

547 548 549 550 551 552
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

569 570 571 572
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
573 574 575 576 577 578 579 580
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
581
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
582 583 584 585 586 587 588 589 590 591 592 593 594
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
	}

	return 0;
}

595 596 597
/*
 * Inits the unity mappings required for a specific device
 */
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

615 616 617 618 619 620 621 622 623
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
624

625 626 627 628 629
/*
 * The address allocator core function.
 *
 * called with domain->lock held
 */
630 631
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
632
					     unsigned int pages,
633 634
					     unsigned long align_mask,
					     u64 dma_mask)
635
{
636
	unsigned long limit;
637 638 639 640 641
	unsigned long address;
	unsigned long boundary_size;

	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;
642 643
	limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
				       dma_mask >> PAGE_SHIFT);
644

645
	if (dom->next_bit >= limit) {
646
		dom->next_bit = 0;
647 648
		dom->need_flush = true;
	}
649 650

	address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
651
				   0 , boundary_size, align_mask);
652
	if (address == -1) {
653
		address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
654
				0, boundary_size, align_mask);
655 656
		dom->need_flush = true;
	}
657 658 659 660 661 662 663 664 665 666 667 668

	if (likely(address != -1)) {
		dom->next_bit = address + pages;
		address <<= PAGE_SHIFT;
	} else
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

669 670 671 672 673
/*
 * The address free function.
 *
 * called with domain->lock held
 */
674 675 676 677 678 679
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
	address >>= PAGE_SHIFT;
	iommu_area_free(dom->bitmap, address, pages);
680

681
	if (address >= dom->next_bit)
682
		dom->need_flush = true;
683 684
}

685 686 687 688 689 690 691 692 693 694
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

712 713 714 715 716 717 718 719 720 721 722 723
#ifdef CONFIG_IOMMU_API
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
#endif

724 725 726 727
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
728 729 730 731 732 733 734 735 736
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

737
	iommu_area_reserve(dom->bitmap, start_page, pages);
738 739
}

740
static void free_pagetable(struct protection_domain *domain)
741 742 743 744
{
	int i, j;
	u64 *p1, *p2, *p3;

745
	p1 = domain->pt_root;
746 747 748 749 750 751 752 753 754

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
755
		for (j = 0; j < 512; ++j) {
756 757 758 759 760 761 762 763 764 765
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
766 767

	domain->pt_root = NULL;
768 769
}

770 771 772 773
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
774 775 776 777 778
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

779
	free_pagetable(&dom->domain);
780 781 782 783 784 785 786 787

	kfree(dom->pte_pages);

	kfree(dom->bitmap);

	kfree(dom);
}

788 789 790 791 792
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
						   unsigned order)
{
	struct dma_ops_domain *dma_dom;
	unsigned i, num_pte_pages;
	u64 *l2_pde;
	u64 address;

	/*
	 * Currently the DMA aperture must be between 32 MB and 1GB in size
	 */
	if ((order < 25) || (order > 30))
		return NULL;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
818
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
	dma_dom->aperture_size = (1ULL << order);
	dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
				  GFP_KERNEL);
	if (!dma_dom->bitmap)
		goto free_dma_dom;
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
	dma_dom->bitmap[0] = 1;
	dma_dom->next_bit = 0;

834
	dma_dom->need_flush = false;
835
	dma_dom->target_dev = 0xffff;
836

837
	/* Intialize the exclusion range if necessary */
838 839 840
	if (iommu->exclusion_start &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
841 842 843
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
844 845 846
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

847 848 849 850 851
	/*
	 * At the last step, build the page tables so we don't need to
	 * allocate page table pages in the dma_ops mapping/unmapping
	 * path.
	 */
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
	dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
			GFP_KERNEL);
	if (!dma_dom->pte_pages)
		goto free_dma_dom;

	l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
	if (l2_pde == NULL)
		goto free_dma_dom;

	dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));

	for (i = 0; i < num_pte_pages; ++i) {
		dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!dma_dom->pte_pages[i])
			goto free_dma_dom;
		address = virt_to_phys(dma_dom->pte_pages[i]);
		l2_pde[i] = IOMMU_L1_PDE(address);
	}

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

880 881 882 883 884 885 886 887 888
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

889 890 891 892
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
893 894 895 896 897 898 899 900 901 902 903 904
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

905 906 907 908
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
909 910 911
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
912 913 914 915
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

916 917
	domain->dev_cnt += 1;

918 919 920
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
921 922

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
923 924
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
925 926 927 928 929 930 931 932
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
969 970 971 972 973 974 975 976 977 978

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
979 980
	int order = amd_iommu_aperture_order;
	unsigned long flags;
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
	case BUS_NOTIFY_BOUND_DRIVER:
		if (domain)
			goto out;
		dma_domain = find_protection_domain(devid);
		if (!dma_domain)
			dma_domain = iommu->default_dom;
		attach_device(iommu, &dma_domain->domain, devid);
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
		       "device %s\n", dma_domain->domain.id, dev_name(dev));
		break;
	case BUS_NOTIFY_UNBIND_DRIVER:
		if (!domain)
			goto out;
		detach_device(domain, devid);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
		dma_domain = dma_ops_domain_alloc(iommu, order);
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

struct notifier_block device_nb = {
	.notifier_call = device_change_notifier,
};
1042

1043 1044 1045 1046 1047 1048
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1087 1088 1089 1090 1091 1092 1093
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1094 1095 1096 1097 1098 1099 1100 1101 1102
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1103 1104 1105 1106 1107 1108
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1109 1110

	pcidev = to_pci_dev(dev);
1111
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1112

1113
	/* device not translated by any IOMMU in the system? */
1114
	if (_bdf > amd_iommu_last_bdf)
1115 1116 1117 1118 1119 1120 1121 1122 1123
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1124 1125 1126
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1127
		*domain = &dma_dom->domain;
1128
		attach_device(*iommu, *domain, *bdf);
1129
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1130
				"device %s\n", (*domain)->id, dev_name(dev));
1131 1132
	}

1133
	if (domain_for_device(_bdf) == NULL)
1134
		attach_device(*iommu, *domain, _bdf);
1135

1136 1137 1138
	return 1;
}

1139 1140 1141 1142
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1174 1175 1176
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1177 1178 1179 1180 1181 1182 1183 1184 1185
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1186
	WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
1187 1188 1189 1190 1191 1192 1193 1194 1195

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1196 1197
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1198 1199
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1200 1201
 * Must be called with the domain lock held.
 */
1202 1203 1204 1205 1206
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1207
			       int dir,
1208 1209
			       bool align,
			       u64 dma_mask)
1210 1211 1212 1213
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
	dma_addr_t address, start;
	unsigned int pages;
1214
	unsigned long align_mask = 0;
1215 1216
	int i;

1217
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1218 1219
	paddr &= PAGE_MASK;

1220 1221 1222
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1223 1224
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	if (unlikely(address == bad_dma_address))
		goto out;

	start = address;
	for (i = 0; i < pages; ++i) {
		dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1236
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1237 1238 1239
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1240 1241
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1242 1243 1244 1245
out:
	return address;
}

1246 1247 1248 1249
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1250 1251 1252 1253 1254 1255 1256 1257 1258
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1259 1260
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1261 1262
		return;

1263
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1264 1265 1266 1267 1268 1269 1270 1271 1272
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1273

1274
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1275
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1276 1277
		dma_dom->need_flush = false;
	}
1278 1279
}

1280 1281 1282
/*
 * The exported map_single function for dma_ops.
 */
1283 1284 1285 1286 1287 1288 1289 1290
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
			     size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1291
	u64 dma_mask;
1292

1293 1294
	INC_STATS_COUNTER(cnt_map_single);

1295 1296 1297
	if (!check_device(dev))
		return bad_dma_address;

1298
	dma_mask = *dev->dma_mask;
1299 1300 1301 1302

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1303
		/* device not handled by any AMD IOMMU */
1304 1305
		return (dma_addr_t)paddr;

1306 1307 1308
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1309
	spin_lock_irqsave(&domain->lock, flags);
1310 1311
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1312 1313 1314
	if (addr == bad_dma_address)
		goto out;

1315
	iommu_completion_wait(iommu);
1316 1317 1318 1319 1320 1321 1322

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1323 1324 1325
/*
 * The exported unmap_single function for dma_ops.
 */
1326 1327 1328 1329 1330 1331 1332 1333
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
			 size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1334 1335
	INC_STATS_COUNTER(cnt_unmap_single);

1336 1337
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1338
		/* device not handled by any AMD IOMMU */
1339 1340
		return;

1341 1342 1343
	if (!dma_ops_domain(domain))
		return;

1344 1345 1346 1347
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1348
	iommu_completion_wait(iommu);
1349 1350 1351 1352

	spin_unlock_irqrestore(&domain->lock, flags);
}

1353 1354 1355 1356
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1371 1372 1373 1374
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static int map_sg(struct device *dev, struct scatterlist *sglist,
		  int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1386
	u64 dma_mask;
1387

1388 1389
	INC_STATS_COUNTER(cnt_map_sg);

1390 1391 1392
	if (!check_device(dev))
		return 0;

1393
	dma_mask = *dev->dma_mask;
1394 1395 1396 1397 1398 1399

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1400 1401 1402
	if (!dma_ops_domain(domain))
		return 0;

1403 1404 1405 1406 1407 1408
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1409 1410
					      paddr, s->length, dir, false,
					      dma_mask);
1411 1412 1413 1414 1415 1416 1417 1418

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1419
	iommu_completion_wait(iommu);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1438 1439 1440 1441
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
		     int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1452 1453
	INC_STATS_COUNTER(cnt_unmap_sg);

1454 1455
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1456 1457
		return;

1458 1459 1460
	if (!dma_ops_domain(domain))
		return;

1461 1462 1463 1464 1465 1466 1467 1468
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1469
	iommu_completion_wait(iommu);
1470 1471 1472 1473

	spin_unlock_irqrestore(&domain->lock, flags);
}

1474 1475 1476
/*
 * The exported alloc_coherent function for dma_ops.
 */
1477 1478 1479 1480 1481 1482 1483 1484 1485
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1486
	u64 dma_mask = dev->coherent_dma_mask;
1487

1488 1489
	INC_STATS_COUNTER(cnt_alloc_coherent);

1490 1491
	if (!check_device(dev))
		return NULL;
1492

1493 1494
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1495

1496
	flag |= __GFP_ZERO;
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1508 1509 1510
	if (!dma_ops_domain(domain))
		goto out_free;

1511 1512 1513
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1514 1515 1516
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1517
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1518

1519 1520
	if (*dma_addr == bad_dma_address)
		goto out_free;
1521

1522
	iommu_completion_wait(iommu);
1523 1524 1525 1526

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1527 1528 1529 1530 1531 1532

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1533 1534
}

1535 1536 1537
/*
 * The exported free_coherent function for dma_ops.
 */
1538 1539 1540 1541 1542 1543 1544 1545
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1546 1547
	INC_STATS_COUNTER(cnt_free_coherent);

1548 1549 1550
	if (!check_device(dev))
		return;

1551 1552 1553 1554 1555
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1556 1557 1558
	if (!dma_ops_domain(domain))
		goto free_mem;

1559 1560 1561 1562
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1563
	iommu_completion_wait(iommu);
1564 1565 1566 1567 1568 1569 1570

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1595
/*
1596 1597
 * The function for pre-allocating protection domains.
 *
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
void prealloc_protection_domains(void)
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1611
		devid = calc_devid(dev->bus->number, dev->devfn);
1612
		if (devid > amd_iommu_last_bdf)
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
		dma_dom = dma_ops_domain_alloc(iommu, order);
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1624 1625 1626
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1627 1628 1629
	}
}

1630 1631 1632 1633 1634 1635 1636
static struct dma_mapping_ops amd_iommu_dma_ops = {
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
	.map_single = map_single,
	.unmap_single = unmap_single,
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1637
	.dma_supported = amd_iommu_dma_supported,
1638 1639
};

1640 1641 1642
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1643 1644 1645 1646 1647 1648
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	int ret;

1649 1650 1651 1652 1653
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1654 1655 1656 1657
	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu->default_dom = dma_ops_domain_alloc(iommu, order);
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1658
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1659 1660 1661 1662 1663
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1664 1665 1666 1667
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1668 1669 1670 1671 1672 1673
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1674
#ifdef CONFIG_GART_IOMMU
1675 1676
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1677
#endif
1678

1679
	/* Make the driver finally visible to the drivers */
1680 1681
	dma_ops = &amd_iommu_dma_ops;

1682 1683 1684 1685
#ifdef CONFIG_IOMMU_API
	register_iommu(&amd_iommu_ops);
#endif

1686 1687
	bus_register_notifier(&pci_bus_type, &device_nb);

1688 1689
	amd_iommu_stats_init();

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	return 0;

free_domains:

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

#ifdef CONFIG_IOMMU_API

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
		return -EBUSY;

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
};

1924
#endif