slab.c 117.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
174
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
175
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
177
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
178
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
182
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
183
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

206
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
207 208
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209 210
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
220 221 222 223 224 225
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
245
	struct rcu_head head;
246
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
247
	void *addr;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
267
	spinlock_t lock;
A
Andrew Morton 已提交
268 269 270 271 272 273
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
274 275
};

A
Andrew Morton 已提交
276 277 278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
279 280 281 282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
296 297 298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299 300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

312 313 314 315
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
316
static int enable_cpucache(struct kmem_cache *cachep);
317
static void cache_reap(struct work_struct *unused);
318

319
/*
A
Andrew Morton 已提交
320 321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325 326
	extern void __bad_size(void);

327 328 329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340 341 342
	return 0;
}

343 344
static int slab_early_init = 1;

345 346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
347

P
Pekka Enberg 已提交
348
static void kmem_list3_init(struct kmem_list3 *parent)
349 350 351 352 353 354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356 357 358 359 360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
361 362 363 364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365 366
	} while (0)

A
Andrew Morton 已提交
367 368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369 370 371 372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
373 374

/*
375
 * struct kmem_cache
L
Linus Torvalds 已提交
376 377 378
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
379

380
struct kmem_cache {
L
Linus Torvalds 已提交
381
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
384 385 386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
	u32 reciprocal_buffer_size;
390 391
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
392 393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
394

395
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
396
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
397
	unsigned int gfporder;
L
Linus Torvalds 已提交
398 399

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
400
	gfp_t gfpflags;
L
Linus Torvalds 已提交
401

A
Andrew Morton 已提交
402
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
405
	unsigned int slab_size;
A
Andrew Morton 已提交
406
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
407 408

	/* constructor func */
409
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
410 411

	/* de-constructor func */
412
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
413

414
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
415 416
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
417

418
/* 6) statistics */
L
Linus Torvalds 已提交
419
#if STATS
P
Pekka Enberg 已提交
420 421 422 423 424 425 426 427 428
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
429
	unsigned long node_overflow;
P
Pekka Enberg 已提交
430 431 432 433
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
434 435
#endif
#if DEBUG
436 437 438 439 440 441 442 443
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
444
#endif
E
Eric Dumazet 已提交
445 446 447 448 449 450 451 452 453 454 455
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
456 457 458 459 460 461
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
462 463 464
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
465
 *
A
Adrian Bunk 已提交
466
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475 476
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
477
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
478 479 480 481 482
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
483 484
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
485
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
486
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
487 488 489 490 491
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
492 493 494 495 496 497 498 499 500
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
501
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
502 503 504
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
505
#define	STATS_INC_NODEFREES(x)	do { } while (0)
506
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
507
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
508 509 510 511 512 513 514 515
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
516 517
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
518
 * 0		: objp
519
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
520 521
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
522
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
523
 * 		redzone word.
524 525
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
526 527
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
528
 */
529
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
530
{
531
	return cachep->obj_offset;
L
Linus Torvalds 已提交
532 533
}

534
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
535
{
536
	return cachep->obj_size;
L
Linus Torvalds 已提交
537 538
}

539
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
540 541
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
543 544
}

545
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
546 547 548
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
549
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
550
					 2 * BYTES_PER_WORD);
551
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
552 553
}

554
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
555 556
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
557
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
558 559 560 561
}

#else

562 563
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
564 565 566 567 568 569 570
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
571 572
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
592 593 594 595
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
596
 */
597 598 599 600 601 602 603
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
604
	page = compound_head(page);
605
	BUG_ON(!PageSlab(page));
606 607 608 609 610 611 612 613 614 615
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
616
	BUG_ON(!PageSlab(page));
617 618
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
619

620 621
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
622
	struct page *page = virt_to_head_page(obj);
623 624 625 626 627
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
628
	struct page *page = virt_to_head_page(obj);
629 630 631
	return page_get_slab(page);
}

632 633 634 635 636 637
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

638 639 640 641 642 643 644 645
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
646
{
647 648
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
649 650
}

A
Andrew Morton 已提交
651 652 653
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
671
	{NULL,}
L
Linus Torvalds 已提交
672 673 674 675
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
676
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
677
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
678
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
679 680

/* internal cache of cache description objs */
681
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
682 683 684
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
685
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
686
	.name = "kmem_cache",
L
Linus Torvalds 已提交
687 688
};

689 690
#define BAD_ALIEN_MAGIC 0x01020304ul

691 692 693 694 695 696 697 698
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
699 700 701 702
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
703
 */
704 705 706 707
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
708 709 710

{
	int q;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
738 739 740
	}
}
#else
741
static inline void init_lock_keys(void)
742 743 744 745
{
}
#endif

746 747 748 749
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
750
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
751 752 753 754 755 756 757 758
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
759 760
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
761 762 763
	FULL
} g_cpucache_up;

764 765 766 767 768 769 770 771
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

772
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
773

774
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
775 776 777 778
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
779 780
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
781 782 783 784 785
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
786 787 788
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
789
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
790 791 792 793 794
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
795
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
796 797 798
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
799
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
800 801
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
802
#endif
L
Linus Torvalds 已提交
803 804 805
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
806
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
807 808 809 810
{
	return __find_general_cachep(size, gfpflags);
}

811
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
812
{
813 814
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
815

A
Andrew Morton 已提交
816 817 818
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
819 820 821 822 823 824 825
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
875 876 877 878
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
879 880
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
881 882
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
883
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
884 885 886
	dump_stack();
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
918
		node = first_node(node_online_map);
919

920
	per_cpu(reap_node, cpu) = node;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951 952
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
953
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
954 955 956 957 958 959

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
960
	if (keventd_up() && reap_work->work.func == NULL) {
961
		init_reap_node(cpu);
962
		INIT_DELAYED_WORK(reap_work, cache_reap);
963 964
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
965 966 967
	}
}

968
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
969
					    int batchcount)
L
Linus Torvalds 已提交
970
{
P
Pekka Enberg 已提交
971
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
972 973
	struct array_cache *nc = NULL;

974
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
975 976 977 978 979
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
980
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
981 982 983 984
	}
	return nc;
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1034
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1035 1036 1037 1038 1039 1040 1041
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1042
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1043
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1044

P
Pekka Enberg 已提交
1045
static struct array_cache **alloc_alien_cache(int node, int limit)
1046 1047
{
	struct array_cache **ac_ptr;
1048
	int memsize = sizeof(void *) * nr_node_ids;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1062
				for (i--; i <= 0; i--)
1063 1064 1065 1066 1067 1068 1069 1070 1071
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1072
static void free_alien_cache(struct array_cache **ac_ptr)
1073 1074 1075 1076 1077 1078
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1079
	    kfree(ac_ptr[i]);
1080 1081 1082
	kfree(ac_ptr);
}

1083
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1084
				struct array_cache *ac, int node)
1085 1086 1087 1088 1089
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1090 1091 1092 1093 1094
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1095 1096
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1097

1098
		free_block(cachep, ac->entry, ac->avail, node);
1099 1100 1101 1102 1103
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1104 1105 1106 1107 1108 1109 1110 1111 1112
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1113 1114

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1115 1116 1117 1118 1119 1120
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1121 1122
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1123
{
P
Pekka Enberg 已提交
1124
	int i = 0;
1125 1126 1127 1128
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1129
		ac = alien[i];
1130 1131 1132 1133 1134 1135 1136
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1137

1138
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1139 1140 1141 1142 1143
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1144 1145 1146
	int node;

	node = numa_node_id();
1147 1148 1149 1150 1151

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1152
	if (likely(slabp->nodeid == node))
1153 1154
		return 0;

P
Pekka Enberg 已提交
1155
	l3 = cachep->nodelists[node];
1156 1157 1158
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1159
		spin_lock(&alien->lock);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1173 1174
#endif

1175
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1176
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1177 1178
{
	long cpu = (long)hcpu;
1179
	struct kmem_cache *cachep;
1180 1181 1182
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1183 1184 1185

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1186
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1187 1188
		/*
		 * We need to do this right in the beginning since
1189 1190 1191 1192 1193
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1194
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1195 1196
			/*
			 * Set up the size64 kmemlist for cpu before we can
1197 1198 1199 1200
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1201 1202
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1203 1204 1205
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1206
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1207

1208 1209 1210 1211 1212
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1213 1214
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1215

1216 1217
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1218 1219
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1220 1221 1222
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1223 1224 1225 1226
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1227
		list_for_each_entry(cachep, &cache_chain, next) {
1228
			struct array_cache *nc;
1229
			struct array_cache *shared = NULL;
1230
			struct array_cache **alien = NULL;
1231

1232
			nc = alloc_arraycache(node, cachep->limit,
1233
						cachep->batchcount);
L
Linus Torvalds 已提交
1234 1235
			if (!nc)
				goto bad;
1236 1237
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1238 1239
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1240 1241 1242
				if (!shared)
					goto bad;
			}
1243 1244 1245 1246 1247
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1248
			cachep->array[cpu] = nc;
1249 1250 1251
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1252 1253 1254 1255 1256 1257 1258 1259
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1260
			}
1261 1262 1263 1264 1265 1266 1267 1268 1269
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1270 1271 1272
		}
		break;
	case CPU_ONLINE:
1273
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1274 1275 1276
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1277 1278 1279 1280 1281 1282
	case CPU_DOWN_PREPARE:
		mutex_lock(&cache_chain_mutex);
		break;
	case CPU_DOWN_FAILED:
		mutex_unlock(&cache_chain_mutex);
		break;
L
Linus Torvalds 已提交
1283
	case CPU_DEAD:
1284 1285 1286 1287 1288 1289 1290 1291
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1292
		/* fall thru */
1293
#endif
L
Linus Torvalds 已提交
1294 1295 1296
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1297 1298
			struct array_cache *shared;
			struct array_cache **alien;
1299
			cpumask_t mask;
L
Linus Torvalds 已提交
1300

1301
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1302 1303 1304
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1305 1306 1307
			l3 = cachep->nodelists[node];

			if (!l3)
1308
				goto free_array_cache;
1309

1310
			spin_lock_irq(&l3->list_lock);
1311 1312 1313 1314

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1315
				free_block(cachep, nc->entry, nc->avail, node);
1316 1317

			if (!cpus_empty(mask)) {
1318
				spin_unlock_irq(&l3->list_lock);
1319
				goto free_array_cache;
P
Pekka Enberg 已提交
1320
			}
1321

1322 1323
			shared = l3->shared;
			if (shared) {
1324 1325
				free_block(cachep, shared->entry,
					   shared->avail, node);
1326 1327 1328
				l3->shared = NULL;
			}

1329 1330 1331 1332 1333 1334 1335 1336 1337
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1338
			}
1339
free_array_cache:
L
Linus Torvalds 已提交
1340 1341
			kfree(nc);
		}
1342 1343 1344 1345 1346 1347 1348 1349 1350
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1351
			drain_freelist(cachep, l3, l3->free_objects);
1352
		}
I
Ingo Molnar 已提交
1353
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1354 1355 1356
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1357
bad:
L
Linus Torvalds 已提交
1358 1359 1360
	return NOTIFY_BAD;
}

1361 1362 1363
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1364

1365 1366 1367
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1368 1369
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1370 1371 1372 1373 1374 1375 1376 1377
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1378 1379 1380 1381 1382
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1383 1384 1385 1386 1387
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1388 1389 1390
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1391 1392 1393 1394 1395 1396
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1397
	int i;
1398
	int order;
P
Pekka Enberg 已提交
1399
	int node;
1400

1401 1402 1403
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1404 1405 1406 1407 1408
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1419 1420 1421
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1422 1423 1424
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1425
	 * 2) Create the first kmalloc cache.
1426
	 *    The struct kmem_cache for the new cache is allocated normally.
1427 1428 1429
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1430 1431
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1432 1433 1434
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1435 1436
	 */

P
Pekka Enberg 已提交
1437 1438
	node = numa_node_id();

L
Linus Torvalds 已提交
1439 1440 1441 1442 1443
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1444
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1445

E
Eric Dumazet 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1455 1456
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1457 1458
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1459

1460 1461 1462 1463 1464 1465
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1466
	BUG_ON(!cache_cache.num);
1467
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1468 1469 1470
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1471 1472 1473 1474 1475

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1476 1477 1478 1479
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1480 1481 1482
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1483 1484 1485 1486
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1487

A
Andrew Morton 已提交
1488
	if (INDEX_AC != INDEX_L3) {
1489
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1490 1491 1492 1493 1494 1495
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1496

1497 1498
	slab_early_init = 0;

L
Linus Torvalds 已提交
1499
	while (sizes->cs_size != ULONG_MAX) {
1500 1501
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1502 1503 1504
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1505 1506
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1507
		if (!sizes->cs_cachep) {
1508
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1509 1510 1511 1512 1513
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1514 1515 1516
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1517 1518 1519 1520 1521
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1522
#endif
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1528
		struct array_cache *ptr;
1529

L
Linus Torvalds 已提交
1530
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1531

L
Linus Torvalds 已提交
1532
		local_irq_disable();
1533 1534
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1535
		       sizeof(struct arraycache_init));
1536 1537 1538 1539 1540
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1541 1542
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1543

L
Linus Torvalds 已提交
1544
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1545

L
Linus Torvalds 已提交
1546
		local_irq_disable();
1547
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1548
		       != &initarray_generic.cache);
1549
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1550
		       sizeof(struct arraycache_init));
1551 1552 1553 1554 1555
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1556
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1557
		    ptr;
L
Linus Torvalds 已提交
1558 1559
		local_irq_enable();
	}
1560 1561
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1562 1563
		int nid;

1564
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1565
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1566

P
Pekka Enberg 已提交
1567
		for_each_online_node(nid) {
1568
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1569
				  &initkmem_list3[SIZE_AC + nid], nid);
1570 1571 1572

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1573
					  &initkmem_list3[SIZE_L3 + nid], nid);
1574 1575 1576
			}
		}
	}
L
Linus Torvalds 已提交
1577

1578
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1579
	{
1580
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1581
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1582
		list_for_each_entry(cachep, &cache_chain, next)
1583 1584
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1585
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1586 1587
	}

1588 1589 1590 1591
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1592 1593 1594
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1595 1596 1597
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1598 1599 1600
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1601 1602 1603
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609 1610
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1611 1612
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1613
	 */
1614
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1615
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1627
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1628 1629
{
	struct page *page;
1630
	int nr_pages;
L
Linus Torvalds 已提交
1631 1632
	int i;

1633
#ifndef CONFIG_MMU
1634 1635 1636
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1637
	 */
1638
	flags |= __GFP_COMP;
1639
#endif
1640

1641
	flags |= cachep->gfpflags;
1642 1643

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1644 1645 1646
	if (!page)
		return NULL;

1647
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1648
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1649 1650 1651 1652 1653
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1654 1655 1656
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1657 1658 1659 1660 1661
}

/*
 * Interface to system's page release.
 */
1662
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1663
{
P
Pekka Enberg 已提交
1664
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1665 1666 1667
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1668 1669 1670 1671 1672 1673
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1674
	while (i--) {
N
Nick Piggin 已提交
1675 1676
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1686
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1687
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1697
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1698
			    unsigned long caller)
L
Linus Torvalds 已提交
1699
{
1700
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1701

1702
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1703

P
Pekka Enberg 已提交
1704
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1705 1706
		return;

P
Pekka Enberg 已提交
1707 1708 1709 1710
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1711 1712 1713 1714 1715 1716 1717
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1718
				*addr++ = svalue;
L
Linus Torvalds 已提交
1719 1720 1721 1722 1723 1724 1725
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1726
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1727 1728 1729
}
#endif

1730
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1731
{
1732 1733
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1734 1735

	memset(addr, val, size);
P
Pekka Enberg 已提交
1736
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1742 1743 1744
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1745
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1746 1747 1748 1749 1750
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1751
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1752
	}
L
Linus Torvalds 已提交
1753
	printk("\n");
D
Dave Jones 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1768 1769 1770 1771 1772
}
#endif

#if DEBUG

1773
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778 1779
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1780 1781
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1782 1783 1784 1785
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1786
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1787
		print_symbol("(%s)",
A
Andrew Morton 已提交
1788
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1789 1790
		printk("\n");
	}
1791 1792
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1793
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1794 1795
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1796 1797
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1798 1799 1800 1801
		dump_line(realobj, i, limit);
	}
}

1802
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1803 1804 1805 1806 1807
{
	char *realobj;
	int size, i;
	int lines = 0;

1808 1809
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1810

P
Pekka Enberg 已提交
1811
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1812
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1813
		if (i == size - 1)
L
Linus Torvalds 已提交
1814 1815 1816 1817 1818 1819
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1820
				printk(KERN_ERR
1821 1822
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1823 1824 1825
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1826
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1827
			limit = 16;
P
Pekka Enberg 已提交
1828 1829
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1842
		struct slab *slabp = virt_to_slab(objp);
1843
		unsigned int objnr;
L
Linus Torvalds 已提交
1844

1845
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1846
		if (objnr) {
1847
			objp = index_to_obj(cachep, slabp, objnr - 1);
1848
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1849
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1850
			       realobj, size);
L
Linus Torvalds 已提交
1851 1852
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1853
		if (objnr + 1 < cachep->num) {
1854
			objp = index_to_obj(cachep, slabp, objnr + 1);
1855
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1856
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1857
			       realobj, size);
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862 1863
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1864 1865
#if DEBUG
/**
1866 1867 1868 1869 1870 1871
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1872
 */
1873
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1874 1875 1876
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1877
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1878 1879 1880

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1881 1882
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1883
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1884
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1894
					   "was overwritten");
L
Linus Torvalds 已提交
1895 1896
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1897
					   "was overwritten");
L
Linus Torvalds 已提交
1898 1899
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1900
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1901
	}
1902
}
L
Linus Torvalds 已提交
1903
#else
1904
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1905
{
L
Linus Torvalds 已提交
1906 1907 1908
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1909
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1910
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1911 1912
		}
	}
1913
}
L
Linus Torvalds 已提交
1914 1915
#endif

1916 1917 1918 1919 1920
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1921
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1922 1923
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1924
 */
1925
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1926 1927 1928 1929
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1930 1931 1932
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1933
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1939 1940
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1941 1942 1943
	}
}

A
Andrew Morton 已提交
1944 1945 1946 1947
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1948
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1949 1950 1951 1952
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1953
		cachep->nodelists[node] = &initkmem_list3[index + node];
1954
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1955 1956
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1957 1958 1959
	}
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1981
/**
1982 1983 1984 1985 1986 1987 1988
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1989 1990 1991 1992 1993
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1994
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1995
			size_t size, size_t align, unsigned long flags)
1996
{
1997
	unsigned long offslab_limit;
1998
	size_t left_over = 0;
1999
	int gfporder;
2000

A
Andrew Morton 已提交
2001
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2002 2003 2004
		unsigned int num;
		size_t remainder;

2005
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2006 2007
		if (!num)
			continue;
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2021

2022
		/* Found something acceptable - save it away */
2023
		cachep->num = num;
2024
		cachep->gfporder = gfporder;
2025 2026
		left_over = remainder;

2027 2028 2029 2030 2031 2032 2033 2034
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2035 2036 2037 2038
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2039
		if (gfporder >= slab_break_gfp_order)
2040 2041
			break;

2042 2043 2044
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2045
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2046 2047 2048 2049 2050
			break;
	}
	return left_over;
}

2051
static int setup_cpu_cache(struct kmem_cache *cachep)
2052
{
2053 2054 2055
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2102
	return 0;
2103 2104
}

L
Linus Torvalds 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2120 2121
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2134
struct kmem_cache *
L
Linus Torvalds 已提交
2135
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2136 2137
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2138
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2139 2140
{
	size_t left_over, slab_size, ralign;
2141
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2142 2143 2144 2145

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2146
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2147
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2148 2149
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2150 2151
		BUG();
	}
L
Linus Torvalds 已提交
2152

2153
	/*
2154 2155
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2156
	 */
I
Ingo Molnar 已提交
2157
	mutex_lock(&cache_chain_mutex);
2158

2159
	list_for_each_entry(pc, &cache_chain, next) {
2160 2161 2162 2163 2164 2165 2166 2167
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2168
		res = probe_kernel_address(pc->name, tmp);
2169
		if (res) {
2170 2171
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2172
			       pc->buffer_size);
2173 2174 2175
			continue;
		}

P
Pekka Enberg 已提交
2176
		if (!strcmp(pc->name, name)) {
2177 2178
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2179 2180 2181 2182 2183
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2193
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2194
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2205 2206
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2207
	 */
2208
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2209

A
Andrew Morton 已提交
2210 2211
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2212 2213 2214
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2215 2216 2217
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2218 2219
	}

A
Andrew Morton 已提交
2220 2221
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2222 2223
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2224 2225 2226 2227
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2228 2229
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2230
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2231 2232 2233 2234
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2235 2236 2237 2238 2239 2240 2241 2242 2243

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

2244
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2245 2246 2247
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2248
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2249 2250 2251
	if (ralign < align) {
		ralign = align;
	}
2252 2253 2254
	/* disable debug if necessary */
	if (ralign > BYTES_PER_WORD)
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2255
	/*
2256
	 * 4) Store it.
L
Linus Torvalds 已提交
2257 2258 2259 2260
	 */
	align = ralign;

	/* Get cache's description obj. */
2261
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2262
	if (!cachep)
2263
		goto oops;
L
Linus Torvalds 已提交
2264 2265

#if DEBUG
2266
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2267

2268 2269 2270 2271
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2272 2273
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2274
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2275
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2276 2277
	}
	if (flags & SLAB_STORE_USER) {
2278 2279
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2280 2281 2282 2283
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2284
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2285 2286
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291
		size = PAGE_SIZE;
	}
#endif
#endif

2292 2293 2294 2295 2296 2297
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302 2303 2304 2305
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2306
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2307 2308

	if (!cachep->num) {
2309 2310
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2311 2312
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2313
		goto oops;
L
Linus Torvalds 已提交
2314
	}
P
Pekka Enberg 已提交
2315 2316
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2329 2330
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2331 2332 2333 2334 2335 2336
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2337
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2338 2339 2340
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2341
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2342
		cachep->gfpflags |= GFP_DMA;
2343
	cachep->buffer_size = size;
2344
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2345

2346
	if (flags & CFLGS_OFF_SLAB) {
2347
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2348 2349 2350 2351 2352 2353 2354 2355 2356
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2357 2358 2359 2360
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2361 2362 2363 2364 2365
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2366 2367 2368

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2369
oops:
L
Linus Torvalds 已提交
2370 2371
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2372
		      name);
I
Ingo Molnar 已提交
2373
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2389
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2390 2391 2392
{
#ifdef CONFIG_SMP
	check_irq_off();
2393
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2394 2395
#endif
}
2396

2397
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2398 2399 2400 2401 2402 2403 2404
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2405 2406 2407 2408
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2409
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2410 2411
#endif

2412 2413 2414 2415
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2416 2417
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2418
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2419
	struct array_cache *ac;
2420
	int node = numa_node_id();
L
Linus Torvalds 已提交
2421 2422

	check_irq_off();
2423
	ac = cpu_cache_get(cachep);
2424 2425 2426
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2427 2428 2429
	ac->avail = 0;
}

2430
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2431
{
2432 2433 2434
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2435
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2436
	check_irq_on();
P
Pekka Enberg 已提交
2437
	for_each_online_node(node) {
2438
		l3 = cachep->nodelists[node];
2439 2440 2441 2442 2443 2444 2445
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2446
			drain_array(cachep, l3, l3->shared, 1, node);
2447
	}
L
Linus Torvalds 已提交
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2458
{
2459 2460
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2461 2462
	struct slab *slabp;

2463 2464
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2465

2466
		spin_lock_irq(&l3->list_lock);
2467
		p = l3->slabs_free.prev;
2468 2469 2470 2471
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2472

2473
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2474
#if DEBUG
2475
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2476 2477
#endif
		list_del(&slabp->list);
2478 2479 2480 2481 2482
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2483
		spin_unlock_irq(&l3->list_lock);
2484 2485
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2486
	}
2487 2488
out:
	return nr_freed;
L
Linus Torvalds 已提交
2489 2490
}

2491
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2492
static int __cache_shrink(struct kmem_cache *cachep)
2493 2494 2495 2496 2497 2498 2499 2500 2501
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2502 2503 2504 2505 2506 2507 2508
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2509 2510 2511 2512
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2513 2514 2515 2516 2517 2518 2519
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2520
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2521
{
2522
	int ret;
2523
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2524

2525 2526 2527 2528
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2529 2530 2531 2532 2533 2534 2535
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2536
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2548
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2549
{
2550
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2551 2552

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2553
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2560
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2561
		mutex_unlock(&cache_chain_mutex);
2562
		return;
L
Linus Torvalds 已提交
2563 2564 2565
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2566
		synchronize_rcu();
L
Linus Torvalds 已提交
2567

2568
	__kmem_cache_destroy(cachep);
2569
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2570 2571 2572
}
EXPORT_SYMBOL(kmem_cache_destroy);

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2584
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2585 2586
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2587 2588
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2589

L
Linus Torvalds 已提交
2590 2591
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2592
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2593
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2594 2595 2596
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2597
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2598 2599 2600 2601
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2602
	slabp->s_mem = objp + colour_off;
2603
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2609
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2610 2611
}

2612
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2613
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2614 2615 2616 2617
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2618
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2631 2632 2633
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2634 2635
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2636
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2637
				     ctor_flags);
L
Linus Torvalds 已提交
2638 2639 2640 2641

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2642
					   " end of an object");
L
Linus Torvalds 已提交
2643 2644
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2645
					   " start of an object");
L
Linus Torvalds 已提交
2646
		}
A
Andrew Morton 已提交
2647 2648
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2649
			kernel_map_pages(virt_to_page(objp),
2650
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2651 2652 2653 2654
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2655
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2656
	}
P
Pekka Enberg 已提交
2657
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2658 2659 2660
	slabp->free = 0;
}

2661
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2662
{
2663 2664 2665 2666 2667 2668
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2669 2670
}

A
Andrew Morton 已提交
2671 2672
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2673
{
2674
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2688 2689
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2690
{
2691
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2692 2693 2694 2695 2696

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2697
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2698
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2699
				"'%s', objp %p\n", cachep->name, objp);
2700 2701 2702 2703 2704 2705 2706 2707
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2708 2709 2710 2711 2712 2713 2714
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2715
{
2716
	int nr_pages;
L
Linus Torvalds 已提交
2717 2718
	struct page *page;

2719
	page = virt_to_page(addr);
2720

2721
	nr_pages = 1;
2722
	if (likely(!PageCompound(page)))
2723 2724
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2725
	do {
2726 2727
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2728
		page++;
2729
	} while (--nr_pages);
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2736 2737
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2738
{
P
Pekka Enberg 已提交
2739 2740 2741 2742
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2743
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2744

A
Andrew Morton 已提交
2745 2746 2747
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2748
	 */
C
Christoph Lameter 已提交
2749
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2750
	if (flags & __GFP_NO_GROW)
L
Linus Torvalds 已提交
2751 2752 2753
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2754
	local_flags = (flags & GFP_LEVEL_MASK);
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759 2760 2761
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2762
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2763
	check_irq_off();
2764 2765
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2766 2767

	/* Get colour for the slab, and cal the next value. */
2768 2769 2770 2771 2772
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2773

2774
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2787 2788 2789
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2790
	 */
2791 2792
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2793
	if (!objp)
L
Linus Torvalds 已提交
2794 2795 2796
		goto failed;

	/* Get slab management. */
2797 2798
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2799
	if (!slabp)
L
Linus Torvalds 已提交
2800 2801
		goto opps1;

2802
	slabp->nodeid = nodeid;
2803
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808 2809

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2810
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2811 2812

	/* Make slab active. */
2813
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2814
	STATS_INC_GROWN(cachep);
2815 2816
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2817
	return 1;
A
Andrew Morton 已提交
2818
opps1:
L
Linus Torvalds 已提交
2819
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2820
failed:
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2838 2839
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2840 2841 2842
	}
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2865
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2866
				   void *caller)
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2872
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2873
	kfree_debugcheck(objp);
2874
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2875

2876
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2877 2878

	if (cachep->flags & SLAB_RED_ZONE) {
2879
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2880 2881 2882 2883 2884 2885
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2886
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2887 2888

	BUG_ON(objnr >= cachep->num);
2889
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894

	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2895
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2896
	}
2897 2898 2899
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2900 2901
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2902
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2903
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2904
			kernel_map_pages(virt_to_page(objp),
2905
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2916
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2917 2918 2919
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2920

L
Linus Torvalds 已提交
2921 2922 2923 2924 2925 2926 2927
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2928 2929 2930 2931
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2932
		for (i = 0;
2933
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2934
		     i++) {
A
Andrew Morton 已提交
2935
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2936
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2937
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2949
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2950 2951 2952 2953
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2954 2955 2956
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2957 2958

	check_irq_off();
2959
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2960
retry:
L
Linus Torvalds 已提交
2961 2962
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2963 2964 2965 2966
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2967 2968 2969
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2970
	l3 = cachep->nodelists[node];
2971 2972 2973

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2974

2975 2976 2977 2978
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2994 2995 2996 2997 2998 2999 3000 3001

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
3002 3003 3004 3005 3006
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3007
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3008
							    node);
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3020
must_grow:
L
Linus Torvalds 已提交
3021
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3022
alloc_done:
3023
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3024 3025 3026

	if (unlikely(!ac->avail)) {
		int x;
3027
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3028

A
Andrew Morton 已提交
3029
		/* cache_grow can reenable interrupts, then ac could change. */
3030
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3031
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3032 3033
			return NULL;

A
Andrew Morton 已提交
3034
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3035 3036 3037
			goto retry;
	}
	ac->touched = 1;
3038
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3039 3040
}

A
Andrew Morton 已提交
3041 3042
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3043 3044 3045 3046 3047 3048 3049 3050
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3051 3052
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3053
{
P
Pekka Enberg 已提交
3054
	if (!objp)
L
Linus Torvalds 已提交
3055
		return objp;
P
Pekka Enberg 已提交
3056
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3057
#ifdef CONFIG_DEBUG_PAGEALLOC
3058
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3059
			kernel_map_pages(virt_to_page(objp),
3060
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3072 3073 3074 3075
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3076
			printk(KERN_ERR
A
Andrew Morton 已提交
3077 3078 3079
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3080 3081 3082 3083
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3084 3085 3086 3087 3088
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3089
		slabp = page_get_slab(virt_to_head_page(objp));
3090 3091 3092 3093
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3094
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3095
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3096
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3102
	}
3103 3104 3105 3106 3107 3108
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3128
	.ignore_gfp_wait = 1,
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3157
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3188
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3189
{
P
Pekka Enberg 已提交
3190
	void *objp;
L
Linus Torvalds 已提交
3191 3192
	struct array_cache *ac;

3193
	check_irq_off();
3194

3195
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3196 3197 3198
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3199
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3200 3201 3202 3203
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3204 3205 3206
	return objp;
}

3207
#ifdef CONFIG_NUMA
3208
/*
3209
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3210 3211 3212 3213 3214 3215 3216 3217
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3218
	if (in_interrupt() || (flags & __GFP_THISNODE))
3219 3220 3221 3222 3223 3224 3225
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3226
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3227 3228 3229
	return NULL;
}

3230 3231
/*
 * Fallback function if there was no memory available and no objects on a
3232 3233 3234 3235 3236
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3237
 */
3238
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3239
{
3240 3241
	struct zonelist *zonelist;
	gfp_t local_flags;
3242 3243
	struct zone **z;
	void *obj = NULL;
3244
	int nid;
3245 3246 3247 3248 3249 3250 3251

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3252

3253 3254 3255 3256 3257
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3258
	for (z = zonelist->zones; *z && !obj; z++) {
3259
		nid = zone_to_nid(*z);
3260

3261
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3262 3263 3264 3265 3266 3267
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3268
	if (!obj && !(flags & __GFP_NO_GROW)) {
3269 3270 3271 3272 3273 3274
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3275 3276 3277
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3278
		obj = kmem_getpages(cache, flags, -1);
3279 3280
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3297
				/* cache_grow already freed obj */
3298 3299 3300
				obj = NULL;
			}
		}
3301
	}
3302 3303 3304
	return obj;
}

3305 3306
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3307
 */
3308
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3309
				int nodeid)
3310 3311
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3312 3313 3314 3315 3316 3317 3318 3319
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3320
retry:
3321
	check_irq_off();
P
Pekka Enberg 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3341
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3342 3343 3344 3345 3346
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3347
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3348
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3349
	else
P
Pekka Enberg 已提交
3350
		list_add(&slabp->list, &l3->slabs_partial);
3351

P
Pekka Enberg 已提交
3352 3353
	spin_unlock(&l3->list_lock);
	goto done;
3354

A
Andrew Morton 已提交
3355
must_grow:
P
Pekka Enberg 已提交
3356
	spin_unlock(&l3->list_lock);
3357
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3358 3359
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3360

3361
	return fallback_alloc(cachep, flags);
3362

A
Andrew Morton 已提交
3363
done:
P
Pekka Enberg 已提交
3364
	return obj;
3365
}
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3386 3387 3388
	if (should_failslab(cachep, flags))
		return NULL;

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3459 3460 3461
	if (should_failslab(cachep, flags))
		return NULL;

3462 3463 3464 3465 3466 3467 3468 3469 3470
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3471 3472 3473 3474

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3475
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3476
		       int node)
L
Linus Torvalds 已提交
3477 3478
{
	int i;
3479
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3480 3481 3482 3483 3484

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3485
		slabp = virt_to_slab(objp);
3486
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3487
		list_del(&slabp->list);
3488
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3489
		check_slabp(cachep, slabp);
3490
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3491
		STATS_DEC_ACTIVE(cachep);
3492
		l3->free_objects++;
L
Linus Torvalds 已提交
3493 3494 3495 3496
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3497 3498
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3499 3500 3501 3502 3503 3504
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3505 3506
				slab_destroy(cachep, slabp);
			} else {
3507
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512 3513
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3514
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3515 3516 3517 3518
		}
	}
}

3519
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3520 3521
{
	int batchcount;
3522
	struct kmem_list3 *l3;
3523
	int node = numa_node_id();
L
Linus Torvalds 已提交
3524 3525 3526 3527 3528 3529

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3530
	l3 = cachep->nodelists[node];
3531
	spin_lock(&l3->list_lock);
3532 3533
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3534
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3535 3536 3537
		if (max) {
			if (batchcount > max)
				batchcount = max;
3538
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3539
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3540 3541 3542 3543 3544
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3545
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3546
free_done:
L
Linus Torvalds 已提交
3547 3548 3549 3550 3551
#if STATS
	{
		int i = 0;
		struct list_head *p;

3552 3553
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3565
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3566
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3567
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3568 3569 3570
}

/*
A
Andrew Morton 已提交
3571 3572
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3573
 */
3574
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3575
{
3576
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3577 3578 3579 3580

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3581
	if (use_alien_caches && cache_free_alien(cachep, objp))
3582 3583
		return;

L
Linus Torvalds 已提交
3584 3585
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3586
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3587 3588 3589 3590
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3591
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3603
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3604
{
3605
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3606 3607 3608
}
EXPORT_SYMBOL(kmem_cache_alloc);

3609
/**
3610
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3640
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3641
{
P
Pekka Enberg 已提交
3642
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3643
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3644
	unsigned long align_mask = BYTES_PER_WORD - 1;
3645
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3661
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3662 3663
		goto out;
	return 1;
A
Andrew Morton 已提交
3664
out:
L
Linus Torvalds 已提交
3665 3666 3667 3668
	return 0;
}

#ifdef CONFIG_NUMA
3669 3670 3671 3672 3673
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3674 3675
EXPORT_SYMBOL(kmem_cache_alloc_node);

3676 3677
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3678
{
3679
	struct kmem_cache *cachep;
3680 3681 3682 3683 3684 3685

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3686 3687 3688 3689 3690 3691 3692

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3693
EXPORT_SYMBOL(__kmalloc_node);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3709 3710

/**
3711
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3712
 * @size: how many bytes of memory are required.
3713
 * @flags: the type of memory to allocate (see kmalloc).
3714
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3715
 */
3716 3717
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3718
{
3719
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3720

3721 3722 3723 3724 3725 3726
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3727 3728
	if (unlikely(cachep == NULL))
		return NULL;
3729 3730 3731 3732
	return __cache_alloc(cachep, flags, caller);
}


3733
#ifdef CONFIG_DEBUG_SLAB
3734 3735
void *__kmalloc(size_t size, gfp_t flags)
{
3736
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3737 3738 3739
}
EXPORT_SYMBOL(__kmalloc);

3740 3741 3742 3743 3744
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3745 3746 3747 3748 3749 3750 3751

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3752 3753
#endif

P
Pekka Enberg 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 *
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807 3808
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3809
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3810 3811 3812
{
	unsigned long flags;

3813 3814
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3815
	local_irq_save(flags);
3816
	debug_check_no_locks_freed(objp, obj_size(cachep));
3817
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3818 3819 3820 3821 3822 3823 3824 3825
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3826 3827
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3828 3829 3830 3831 3832
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3833
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3834 3835 3836 3837 3838 3839
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3840
	c = virt_to_cache(objp);
3841
	debug_check_no_locks_freed(objp, obj_size(c));
3842
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3843 3844 3845 3846
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3847
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3848
{
3849
	return obj_size(cachep);
L
Linus Torvalds 已提交
3850 3851 3852
}
EXPORT_SYMBOL(kmem_cache_size);

3853
const char *kmem_cache_name(struct kmem_cache *cachep)
3854 3855 3856 3857 3858
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3859
/*
3860
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3861
 */
3862
static int alloc_kmemlist(struct kmem_cache *cachep)
3863 3864 3865
{
	int node;
	struct kmem_list3 *l3;
3866
	struct array_cache *new_shared;
3867
	struct array_cache **new_alien = NULL;
3868 3869

	for_each_online_node(node) {
3870

3871 3872 3873 3874 3875
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3876

3877 3878 3879
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3880
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3881
					0xbaadf00d);
3882 3883 3884 3885
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3886
		}
3887

A
Andrew Morton 已提交
3888 3889
		l3 = cachep->nodelists[node];
		if (l3) {
3890 3891
			struct array_cache *shared = l3->shared;

3892 3893
			spin_lock_irq(&l3->list_lock);

3894
			if (shared)
3895 3896
				free_block(cachep, shared->entry,
						shared->avail, node);
3897

3898 3899
			l3->shared = new_shared;
			if (!l3->alien) {
3900 3901 3902
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3903
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3904
					cachep->batchcount + cachep->num;
3905
			spin_unlock_irq(&l3->list_lock);
3906
			kfree(shared);
3907 3908 3909
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3910
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3911 3912 3913
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3914
			goto fail;
3915
		}
3916 3917 3918

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3919
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3920
		l3->shared = new_shared;
3921
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3922
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3923
					cachep->batchcount + cachep->num;
3924 3925
		cachep->nodelists[node] = l3;
	}
3926
	return 0;
3927

A
Andrew Morton 已提交
3928
fail:
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3944
	return -ENOMEM;
3945 3946
}

L
Linus Torvalds 已提交
3947
struct ccupdate_struct {
3948
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3949 3950 3951 3952 3953
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3954
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3955 3956 3957
	struct array_cache *old;

	check_irq_off();
3958
	old = cpu_cache_get(new->cachep);
3959

L
Linus Torvalds 已提交
3960 3961 3962 3963
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3964
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3965 3966
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3967
{
3968
	struct ccupdate_struct *new;
3969
	int i;
L
Linus Torvalds 已提交
3970

3971 3972 3973 3974
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3975
	for_each_online_cpu(i) {
3976
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3977
						batchcount);
3978
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3979
			for (i--; i >= 0; i--)
3980 3981
				kfree(new->new[i]);
			kfree(new);
3982
			return -ENOMEM;
L
Linus Torvalds 已提交
3983 3984
		}
	}
3985
	new->cachep = cachep;
L
Linus Torvalds 已提交
3986

3987
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3988

L
Linus Torvalds 已提交
3989 3990 3991
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3992
	cachep->shared = shared;
L
Linus Torvalds 已提交
3993

3994
	for_each_online_cpu(i) {
3995
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3996 3997
		if (!ccold)
			continue;
3998
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3999
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
4000
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
4001 4002
		kfree(ccold);
	}
4003
	kfree(new);
4004
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
4005 4006
}

4007
/* Called with cache_chain_mutex held always */
4008
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4009 4010 4011 4012
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4013 4014
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4015 4016
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4017
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4018 4019 4020 4021
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4022
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4023
		limit = 1;
4024
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4025
		limit = 8;
4026
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4027
		limit = 24;
4028
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4029 4030 4031 4032
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4033 4034
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4035 4036 4037 4038 4039 4040 4041 4042
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4043
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4044 4045 4046
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4047 4048 4049
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4050 4051 4052 4053
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4054
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4055 4056
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4057
		       cachep->name, -err);
4058
	return err;
L
Linus Torvalds 已提交
4059 4060
}

4061 4062
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4063 4064
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4065 4066 4067
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4068 4069 4070
{
	int tofree;

4071 4072
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4073 4074
	if (ac->touched && !force) {
		ac->touched = 0;
4075
	} else {
4076
		spin_lock_irq(&l3->list_lock);
4077 4078 4079 4080 4081 4082 4083 4084 4085
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4086
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4087 4088 4089 4090 4091
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4092
 * @w: work descriptor
L
Linus Torvalds 已提交
4093 4094 4095 4096 4097 4098
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4099 4100
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4101
 */
4102
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4103
{
4104
	struct kmem_cache *searchp;
4105
	struct kmem_list3 *l3;
4106
	int node = numa_node_id();
4107 4108
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4109

4110
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4111
		/* Give up. Setup the next iteration. */
4112
		goto out;
L
Linus Torvalds 已提交
4113

4114
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4115 4116
		check_irq_on();

4117 4118 4119 4120 4121
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4122
		l3 = searchp->nodelists[node];
4123

4124
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4125

4126
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4127

4128 4129 4130 4131
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4132
		if (time_after(l3->next_reap, jiffies))
4133
			goto next;
L
Linus Torvalds 已提交
4134

4135
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4136

4137
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4138

4139
		if (l3->free_touched)
4140
			l3->free_touched = 0;
4141 4142
		else {
			int freed;
L
Linus Torvalds 已提交
4143

4144 4145 4146 4147
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4148
next:
L
Linus Torvalds 已提交
4149 4150 4151
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4152
	mutex_unlock(&cache_chain_mutex);
4153
	next_reap_node();
4154
	refresh_cpu_vm_stats(smp_processor_id());
4155
out:
A
Andrew Morton 已提交
4156
	/* Set up the next iteration */
4157
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4158 4159 4160 4161
}

#ifdef CONFIG_PROC_FS

4162
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4163
{
4164 4165 4166 4167
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4168
#if STATS
4169
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4170
#else
4171
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4172
#endif
4173 4174 4175 4176
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4177
#if STATS
4178
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4179
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4180
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4181
#endif
4182 4183 4184 4185 4186 4187 4188 4189
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4190
	mutex_lock(&cache_chain_mutex);
4191 4192
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4193 4194 4195 4196 4197 4198
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4199
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4200 4201 4202 4203
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4204
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4205
	++*pos;
A
Andrew Morton 已提交
4206 4207
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4208 4209 4210 4211
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4212
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4213 4214 4215 4216
}

static int s_show(struct seq_file *m, void *p)
{
4217
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4218 4219 4220 4221 4222
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4223
	const char *name;
L
Linus Torvalds 已提交
4224
	char *error = NULL;
4225 4226
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4227 4228 4229

	active_objs = 0;
	num_slabs = 0;
4230 4231 4232 4233 4234
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4235 4236
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4237

4238
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4239 4240 4241 4242 4243
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4244
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4245 4246 4247 4248 4249 4250 4251
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4252
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4253 4254 4255 4256 4257
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4258 4259
		if (l3->shared)
			shared_avail += l3->shared->avail;
4260

4261
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4262
	}
P
Pekka Enberg 已提交
4263 4264
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4265
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4266 4267
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4268
	name = cachep->name;
L
Linus Torvalds 已提交
4269 4270 4271 4272
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4273
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4274
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4275
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4276
		   cachep->limit, cachep->batchcount, cachep->shared);
4277
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4278
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4279
#if STATS
P
Pekka Enberg 已提交
4280
	{			/* list3 stats */
L
Linus Torvalds 已提交
4281 4282 4283 4284 4285 4286 4287
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4288
		unsigned long node_frees = cachep->node_frees;
4289
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4290

4291
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4292
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4293
				reaped, errors, max_freeable, node_allocs,
4294
				node_frees, overflows);
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4304
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4325
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4326 4327 4328 4329
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4340 4341
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4342
{
P
Pekka Enberg 已提交
4343
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4344
	int limit, batchcount, shared, res;
4345
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4346

L
Linus Torvalds 已提交
4347 4348 4349 4350
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4351
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4362
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4363
	res = -EINVAL;
4364
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4365
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4366 4367
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4368
				res = 0;
L
Linus Torvalds 已提交
4369
			} else {
4370
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4371
						       batchcount, shared);
L
Linus Torvalds 已提交
4372 4373 4374 4375
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4376
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4377 4378 4379 4380
	if (res >= 0)
		res = count;
	return res;
}
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4490
		list_for_each_entry(slabp, &l3->slabs_full, list)
4491
			handle_slab(n, cachep, slabp);
4492
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4519

4520 4521 4522
	return 0;
}

4523
const struct seq_operations slabstats_op = {
4524 4525 4526 4527 4528 4529
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4530 4531
#endif

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4544
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4545
{
4546 4547
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4548

4549
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4550
}