slab.c 101.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts - 
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
104
#include	<linux/string.h>
105
#include	<linux/nodemask.h>
106
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
107
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

203
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268 269 270 271 272 273 274
	spinlock_t lock;
	void *entry[0];		/*
				 * Must have this definition in here for the proper
				 * alignment of array_cache. Also simplifies accessing
				 * the entries.
				 * [0] is for gcc 2.95. It should really be [].
				 */
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
};

/* bootstrap: The caches do not work without cpuarrays anymore,
 * but the cpuarrays are allocated from the generic caches...
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned long next_reap;
	int free_touched;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
313
 * This function must be completely optimized away if
314 315 316 317
 * a constant is passed to it. Mostly the same as
 * what is in linux/slab.h except it returns an
 * index.
 */
318
static __always_inline int index_of(const size_t size)
319
{
320 321
	extern void __bad_size(void);

322 323 324 325 326 327 328 329 330 331
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
332
		__bad_size();
333
	} else
334
		__bad_size();
335 336 337 338 339
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
340

P
Pekka Enberg 已提交
341
static void kmem_list3_init(struct kmem_list3 *parent)
342 343 344 345 346 347
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
348
	parent->colour_next = 0;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)	\
	do {	\
		INIT_LIST_HEAD(listp);		\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
	do {					\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
366 367

/*
368
 * struct kmem_cache
L
Linus Torvalds 已提交
369 370 371
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
372

373
struct kmem_cache {
L
Linus Torvalds 已提交
374
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
375 376 377 378
	struct array_cache *array[NR_CPUS];
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
379
	unsigned int buffer_size;
380
/* 2) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
381 382 383 384
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	unsigned int flags;	/* constant flags */
	unsigned int num;	/* # of objs per slab */
	spinlock_t spinlock;
L
Linus Torvalds 已提交
385 386 387

/* 3) cache_grow/shrink */
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
388
	unsigned int gfporder;
L
Linus Torvalds 已提交
389 390

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
391
	gfp_t gfpflags;
L
Linus Torvalds 已提交
392

P
Pekka Enberg 已提交
393 394
	size_t colour;		/* cache colouring range */
	unsigned int colour_off;	/* colour offset */
395
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
396 397
	unsigned int slab_size;
	unsigned int dflags;	/* dynamic flags */
L
Linus Torvalds 已提交
398 399

	/* constructor func */
400
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
401 402

	/* de-constructor func */
403
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
404 405

/* 4) cache creation/removal */
P
Pekka Enberg 已提交
406 407
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
408 409 410

/* 5) statistics */
#if STATS
P
Pekka Enberg 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
424 425
#endif
#if DEBUG
426 427 428 429 430 431 432 433
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
434 435 436 437 438 439 440 441 442 443
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/* Optimization question: fewer reaps means less 
 * probability for unnessary cpucache drain/refill cycles.
 *
A
Adrian Bunk 已提交
444
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
461
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
#define	STATS_SET_FREEABLE(x, i) \
				do { if ((x)->max_freeable < i) \
					(x)->max_freeable = i; \
				} while (0)

#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
480
#define	STATS_INC_NODEFREES(x)	do { } while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#define	STATS_SET_FREEABLE(x, i) \
				do { } while (0)

#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

/* memory layout of objects:
 * 0		: objp
504
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
505 506
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
507
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
508
 * 		redzone word.
509 510 511
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
L
Linus Torvalds 已提交
512
 */
513
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
514
{
515
	return cachep->obj_offset;
L
Linus Torvalds 已提交
516 517
}

518
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_size;
L
Linus Torvalds 已提交
521 522
}

523
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
524 525
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
527 528
}

529
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
530 531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
533
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
534
					 2 * BYTES_PER_WORD);
535
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
536 537
}

538
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
539 540
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
542 543 544 545
}

#else

546 547
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Maximum size of an obj (in 2^order pages)
 * and absolute limit for the gfp order.
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

576
/* Functions for storing/retrieving the cachep and or slab from the
L
Linus Torvalds 已提交
577 578 579
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
599

600 601 602 603 604 605 606 607 608 609 610 611
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

612 613 614 615 616 617 618 619 620 621 622 623
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

L
Linus Torvalds 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
/* These are the default caches for kmalloc. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
642
	{NULL,}
L
Linus Torvalds 已提交
643 644 645 646
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
647
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
648
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
649
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
650 651

/* internal cache of cache description objs */
652
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
653 654 655
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
656
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
657 658 659
	.flags = SLAB_NO_REAP,
	.spinlock = SPIN_LOCK_UNLOCKED,
	.name = "kmem_cache",
L
Linus Torvalds 已提交
660
#if DEBUG
661
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
662 663 664 665
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
666
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static struct list_head cache_chain;

/*
 * vm_enough_memory() looks at this to determine how many
 * slab-allocated pages are possibly freeable under pressure
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
683 684
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
685 686 687 688 689
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

690 691
static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
692
static void cache_reap(void *unused);
693
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
694

695
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
696 697 698 699
{
	return cachep->array[smp_processor_id()];
}

700
static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
L
Linus Torvalds 已提交
701 702 703 704 705
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
706 707 708
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
709
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
710 711 712 713 714
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
715
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
716 717 718 719 720 721 722 723
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

724
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
725 726 727 728 729
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

730
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
731
{
732 733
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
734

735 736 737 738 739 740 741 742 743
/* Calculate the number of objects and left-over bytes for a given
   buffer size. */
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
744

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
793 794 795 796
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

797
static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
L
Linus Torvalds 已提交
798 799
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
800
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
801 802 803
	dump_stack();
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
		node = 0;

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
862
		init_reap_node(cpu);
L
Linus Torvalds 已提交
863 864 865 866 867
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

868
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
869
					    int batchcount)
L
Linus Torvalds 已提交
870
{
P
Pekka Enberg 已提交
871
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
872 873
	struct array_cache *nc = NULL;

874
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
875 876 877 878 879
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
880
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
881 882 883 884
	}
	return nc;
}

885
#ifdef CONFIG_NUMA
886
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
887

P
Pekka Enberg 已提交
888
static struct array_cache **alloc_alien_cache(int node, int limit)
889 890
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
891
	int memsize = sizeof(void *) * MAX_NUMNODES;
892 893 894 895 896 897 898 899 900 901 902 903 904
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
905
				for (i--; i <= 0; i--)
906 907 908 909 910 911 912 913 914
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
915
static void free_alien_cache(struct array_cache **ac_ptr)
916 917 918 919 920 921 922
{
	int i;

	if (!ac_ptr)
		return;

	for_each_node(i)
P
Pekka Enberg 已提交
923
	    kfree(ac_ptr[i]);
924 925 926 927

	kfree(ac_ptr);
}

928
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
929
				struct array_cache *ac, int node)
930 931 932 933 934
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
935
		free_block(cachep, ac->entry, ac->avail, node);
936 937 938 939 940
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
		if (ac && ac->avail) {
			spin_lock_irq(&ac->lock);
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

958
static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
959
{
P
Pekka Enberg 已提交
960
	int i = 0;
961 962 963 964
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
965
		ac = alien[i];
966 967 968 969 970 971 972 973
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
974

975
#define drain_alien_cache(cachep, alien) do { } while (0)
976
#define reap_alien(cachep, l3) do { } while (0)
977

978 979 980 981 982
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

983 984 985
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
986

987 988
#endif

L
Linus Torvalds 已提交
989
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
990
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
991 992
{
	long cpu = (long)hcpu;
993
	struct kmem_cache *cachep;
994 995 996
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
997 998 999

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1000
		mutex_lock(&cache_chain_mutex);
1001 1002 1003 1004 1005 1006
		/* we need to do this right in the beginning since
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1007
		list_for_each_entry(cachep, &cache_chain, next) {
1008 1009 1010 1011 1012 1013
			/* setup the size64 kmemlist for cpu before we can
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
				if (!(l3 = kmalloc_node(memsize,
P
Pekka Enberg 已提交
1014
							GFP_KERNEL, node)))
1015 1016 1017
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1018
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1019

1020 1021 1022 1023 1024
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1025 1026
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1027

1028 1029
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
P
Pekka Enberg 已提交
1030 1031
			    (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
1032 1033 1034 1035
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

		/* Now we can go ahead with allocating the shared array's
P
Pekka Enberg 已提交
1036
		   & array cache's */
1037
		list_for_each_entry(cachep, &cache_chain, next) {
1038
			struct array_cache *nc;
1039 1040
			struct array_cache *shared;
			struct array_cache **alien;
1041

1042
			nc = alloc_arraycache(node, cachep->limit,
1043
						cachep->batchcount);
L
Linus Torvalds 已提交
1044 1045
			if (!nc)
				goto bad;
1046 1047 1048 1049 1050
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1051

1052 1053 1054
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1055 1056
			cachep->array[cpu] = nc;

1057 1058 1059
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1060 1061 1062 1063 1064 1065 1066 1067
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1068
			}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1079
		}
I
Ingo Molnar 已提交
1080
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1081 1082 1083 1084 1085 1086
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1087 1088 1089 1090 1091 1092 1093 1094
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1095 1096
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1097
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1098 1099 1100

		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1101 1102
			struct array_cache *shared;
			struct array_cache **alien;
1103
			cpumask_t mask;
L
Linus Torvalds 已提交
1104

1105
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1106 1107 1108
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1109 1110 1111
			l3 = cachep->nodelists[node];

			if (!l3)
1112
				goto free_array_cache;
1113

1114
			spin_lock_irq(&l3->list_lock);
1115 1116 1117 1118

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1119
				free_block(cachep, nc->entry, nc->avail, node);
1120 1121

			if (!cpus_empty(mask)) {
1122
				spin_unlock_irq(&l3->list_lock);
1123
				goto free_array_cache;
P
Pekka Enberg 已提交
1124
			}
1125

1126 1127
			shared = l3->shared;
			if (shared) {
1128
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1129
					   l3->shared->avail, node);
1130 1131 1132
				l3->shared = NULL;
			}

1133 1134 1135 1136 1137 1138 1139 1140 1141
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1142
			}
1143
free_array_cache:
L
Linus Torvalds 已提交
1144 1145
			kfree(nc);
		}
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
I
Ingo Molnar 已提交
1160
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1161 1162 1163 1164
		break;
#endif
	}
	return NOTIFY_OK;
P
Pekka Enberg 已提交
1165
      bad:
I
Ingo Molnar 已提交
1166
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1167 1168 1169 1170 1171
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1172 1173 1174
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1175
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

L
Linus Torvalds 已提交
1190 1191 1192 1193 1194 1195 1196 1197
/* Initialisation.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1198
	int i;
1199
	int order;
1200 1201 1202 1203 1204 1205

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1216
	 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
L
Linus Torvalds 已提交
1217 1218
	 *    structures of all caches, except cache_cache itself: cache_cache
	 *    is statically allocated.
1219 1220 1221
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1222
	 * 2) Create the first kmalloc cache.
1223
	 *    The struct kmem_cache for the new cache is allocated normally.
1224 1225 1226
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1227 1228
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1229 1230 1231
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1232 1233 1234 1235 1236 1237 1238
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1239
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1240

1241
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
L
Linus Torvalds 已提交
1242

1243 1244 1245 1246 1247 1248
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
L
Linus Torvalds 已提交
1249 1250
	if (!cache_cache.num)
		BUG();
1251
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1252 1253 1254
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1255 1256 1257 1258 1259

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

1260 1261 1262 1263 1264 1265
	/* Initialize the caches that provide memory for the array cache
	 * and the kmem_list3 structures first.
	 * Without this, further allocations will bug
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
P
Pekka Enberg 已提交
1266 1267 1268 1269
						      sizes[INDEX_AC].cs_size,
						      ARCH_KMALLOC_MINALIGN,
						      (ARCH_KMALLOC_FLAGS |
						       SLAB_PANIC), NULL, NULL);
1270 1271 1272

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
P
Pekka Enberg 已提交
1273 1274 1275 1276 1277
		    kmem_cache_create(names[INDEX_L3].name,
				      sizes[INDEX_L3].cs_size,
				      ARCH_KMALLOC_MINALIGN,
				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
				      NULL);
1278

L
Linus Torvalds 已提交
1279
	while (sizes->cs_size != ULONG_MAX) {
1280 1281
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1282 1283 1284
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1285 1286
		 * allow tighter packing of the smaller caches.
		 */
P
Pekka Enberg 已提交
1287
		if (!sizes->cs_cachep)
1288
			sizes->cs_cachep = kmem_cache_create(names->name,
P
Pekka Enberg 已提交
1289 1290 1291 1292 1293
							     sizes->cs_size,
							     ARCH_KMALLOC_MINALIGN,
							     (ARCH_KMALLOC_FLAGS
							      | SLAB_PANIC),
							     NULL, NULL);
L
Linus Torvalds 已提交
1294 1295 1296

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1297
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1298 1299 1300 1301
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
P
Pekka Enberg 已提交
1302 1303 1304 1305 1306 1307
							sizes->cs_size,
							ARCH_KMALLOC_MINALIGN,
							(ARCH_KMALLOC_FLAGS |
							 SLAB_CACHE_DMA |
							 SLAB_PANIC), NULL,
							NULL);
L
Linus Torvalds 已提交
1308 1309 1310 1311 1312 1313

		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1314
		void *ptr;
1315

L
Linus Torvalds 已提交
1316
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1317

L
Linus Torvalds 已提交
1318
		local_irq_disable();
1319 1320
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1321
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1322 1323
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1324

L
Linus Torvalds 已提交
1325
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1326

L
Linus Torvalds 已提交
1327
		local_irq_disable();
1328
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1329
		       != &initarray_generic.cache);
1330
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1331
		       sizeof(struct arraycache_init));
1332
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1333
		    ptr;
L
Linus Torvalds 已提交
1334 1335
		local_irq_enable();
	}
1336 1337 1338 1339 1340
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1341
			  numa_node_id());
1342 1343 1344

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1345
				  &initkmem_list3[SIZE_AC + node], node);
1346 1347 1348

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1349 1350
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1351 1352 1353
			}
		}
	}
L
Linus Torvalds 已提交
1354

1355
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1356
	{
1357
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1358
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1359
		list_for_each_entry(cachep, &cache_chain, next)
P
Pekka Enberg 已提交
1360
		    enable_cpucache(cachep);
I
Ingo Molnar 已提交
1361
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1362 1363 1364 1365 1366 1367
	}

	/* Done! */
	g_cpucache_up = FULL;

	/* Register a cpu startup notifier callback
1368
	 * that initializes cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	 */
	register_cpu_notifier(&cpucache_notifier);

	/* The reap timers are started later, with a module init call:
	 * That part of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

	/* 
	 * Register the timers that return unneeded
	 * pages to gfp.
	 */
1385
	for_each_online_cpu(cpu)
P
Pekka Enberg 已提交
1386
	    start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

	return 0;
}

__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1400
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1401 1402 1403 1404 1405 1406
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1407
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
N
Nick Piggin 已提交
1417
		__SetPageSlab(page);
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424 1425
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
1426
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1427
{
P
Pekka Enberg 已提交
1428
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1429 1430 1431 1432
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
N
Nick Piggin 已提交
1433 1434
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1441 1442
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1443 1444 1445 1446
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1447
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1448
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1458
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1459
			    unsigned long caller)
L
Linus Torvalds 已提交
1460
{
1461
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1462

1463
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1464

P
Pekka Enberg 已提交
1465
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1466 1467
		return;

P
Pekka Enberg 已提交
1468 1469 1470 1471
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1472 1473 1474 1475 1476 1477 1478
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1479
				*addr++ = svalue;
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485 1486
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1487
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1488 1489 1490
}
#endif

1491
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1492
{
1493 1494
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1495 1496

	memset(addr, val, size);
P
Pekka Enberg 已提交
1497
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
P
Pekka Enberg 已提交
1504 1505
	for (i = 0; i < limit; i++) {
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512
	}
	printk("\n");
}
#endif

#if DEBUG

1513
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
P
Pekka Enberg 已提交
1520 1521
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1522 1523 1524 1525
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
P
Pekka Enberg 已提交
1526
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1527
		print_symbol("(%s)",
P
Pekka Enberg 已提交
1528
			     (unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1529 1530
		printk("\n");
	}
1531 1532
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1533
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1534 1535
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1536 1537
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1538 1539 1540 1541
		dump_line(realobj, i, limit);
	}
}

1542
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1543 1544 1545 1546 1547
{
	char *realobj;
	int size, i;
	int lines = 0;

1548 1549
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1550

P
Pekka Enberg 已提交
1551
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1552
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1553
		if (i == size - 1)
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558 1559
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1560 1561 1562
				printk(KERN_ERR
				       "Slab corruption: start=%p, len=%d\n",
				       realobj, size);
L
Linus Torvalds 已提交
1563 1564 1565
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1566
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1567
			limit = 16;
P
Pekka Enberg 已提交
1568 1569
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1582
		struct slab *slabp = virt_to_slab(objp);
1583
		unsigned int objnr;
L
Linus Torvalds 已提交
1584

1585
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1586
		if (objnr) {
1587
			objp = index_to_obj(cachep, slabp, objnr - 1);
1588
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1589
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1590
			       realobj, size);
L
Linus Torvalds 已提交
1591 1592
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1593
		if (objnr + 1 < cachep->num) {
1594
			objp = index_to_obj(cachep, slabp, objnr + 1);
1595
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1596
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1597
			       realobj, size);
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1604 1605 1606 1607
#if DEBUG
/**
 * slab_destroy_objs - call the registered destructor for each object in
 *      a slab that is to be destroyed.
L
Linus Torvalds 已提交
1608
 */
1609
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1610 1611 1612
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1613
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1614 1615 1616

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1617
			if ((cachep->buffer_size % PAGE_SIZE) == 0
P
Pekka Enberg 已提交
1618 1619
			    && OFF_SLAB(cachep))
				kernel_map_pages(virt_to_page(objp),
1620
						 cachep->buffer_size / PAGE_SIZE,
P
Pekka Enberg 已提交
1621
						 1);
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1631
					   "was overwritten");
L
Linus Torvalds 已提交
1632 1633
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1634
					   "was overwritten");
L
Linus Torvalds 已提交
1635 1636
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1637
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1638
	}
1639
}
L
Linus Torvalds 已提交
1640
#else
1641
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1642
{
L
Linus Torvalds 已提交
1643 1644 1645
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1646
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1647
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1648 1649
		}
	}
1650
}
L
Linus Torvalds 已提交
1651 1652
#endif

1653 1654 1655 1656 1657
/**
 * Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
1658
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1659 1660 1661 1662
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1663 1664 1665
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1666
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

1677
/* For setting up all the kmem_list3s for cache whose buffer_size is same
1678
   as size of kmem_list3. */
1679
static void set_up_list3s(struct kmem_cache *cachep, int index)
1680 1681 1682 1683
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1684
		cachep->nodelists[node] = &initkmem_list3[index + node];
1685
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1686 1687
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1688 1689 1690
	}
}

1691
/**
1692 1693 1694 1695 1696 1697 1698
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1699 1700 1701 1702 1703
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
R
Randy Dunlap 已提交
1704 1705
static inline size_t calculate_slab_order(struct kmem_cache *cachep,
			size_t size, size_t align, unsigned long flags)
1706 1707
{
	size_t left_over = 0;
1708
	int gfporder;
1709

1710
	for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
1711 1712 1713
		unsigned int num;
		size_t remainder;

1714
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1715 1716
		if (!num)
			continue;
1717

1718
		/* More than offslab_limit objects will cause problems */
1719
		if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1720 1721
			break;

1722
		/* Found something acceptable - save it away */
1723
		cachep->num = num;
1724
		cachep->gfporder = gfporder;
1725 1726
		left_over = remainder;

1727 1728 1729 1730 1731 1732 1733 1734
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1735 1736 1737 1738
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1739
		if (gfporder >= slab_break_gfp_order)
1740 1741
			break;

1742 1743 1744 1745
		/*
		 * Acceptable internal fragmentation?
		 */
		if ((left_over * 8) <= (PAGE_SIZE << gfporder))
1746 1747 1748 1749 1750
			break;
	}
	return left_over;
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
static void setup_cpu_cache(struct kmem_cache *cachep)
{
	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
		return;
	}
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
}

L
Linus Torvalds 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting 
 * unloaded.
 * 
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1838
struct kmem_cache *
L
Linus Torvalds 已提交
1839
kmem_cache_create (const char *name, size_t size, size_t align,
1840 1841
	unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1842 1843
{
	size_t left_over, slab_size, ralign;
1844
	struct kmem_cache *cachep = NULL;
1845
	struct list_head *p;
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
P
Pekka Enberg 已提交
1851 1852 1853 1854 1855 1856 1857
	    in_interrupt() ||
	    (size < BYTES_PER_WORD) ||
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
		printk(KERN_ERR "%s: Early error in slab %s\n",
		       __FUNCTION__, name);
		BUG();
	}
L
Linus Torvalds 已提交
1858

1859 1860 1861 1862 1863 1864
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
1865
	mutex_lock(&cache_chain_mutex);
1866 1867

	list_for_each(p, &cache_chain) {
1868
		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1883
			       pc->buffer_size);
1884 1885 1886
			continue;
		}

P
Pekka Enberg 已提交
1887
		if (!strcmp(pc->name, name)) {
1888 1889 1890 1891 1892 1893
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1894 1895 1896 1897 1898
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1899
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
P
Pekka Enberg 已提交
1909 1910 1911
	if ((size < 4096
	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1932 1933 1934
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	}

	/* calculate out the final buffer alignment: */
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Default alignment: as specified by the arch code.
		 * Except if an object is really small, then squeeze multiple
		 * objects into one cacheline.
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1945
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951 1952 1953
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1954
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1960
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966 1967
	}
	/* 4) Store it. Note that the debug code below can reduce
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
1968
	cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
1969
	if (!cachep)
1970
		goto oops;
1971
	memset(cachep, 0, sizeof(struct kmem_cache));
L
Linus Torvalds 已提交
1972 1973

#if DEBUG
1974
	cachep->obj_size = size;
L
Linus Torvalds 已提交
1975 1976 1977 1978 1979 1980

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
1981
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
1982
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
1993
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1994 1995
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
2002
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008 2009 2010
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2011
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2017
		goto oops;
L
Linus Torvalds 已提交
2018
	}
P
Pekka Enberg 已提交
2019 2020
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2033 2034
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2035 2036 2037 2038 2039 2040
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2041
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2042 2043 2044 2045 2046 2047
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
2048
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2049 2050

	if (flags & CFLGS_OFF_SLAB)
2051
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


2057
	setup_cpu_cache(cachep);
L
Linus Torvalds 已提交
2058 2059 2060

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
P
Pekka Enberg 已提交
2061
      oops:
L
Linus Torvalds 已提交
2062 2063
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2064
		      name);
I
Ingo Molnar 已提交
2065
	mutex_unlock(&cache_chain_mutex);
2066
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2082
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2083 2084 2085
{
#ifdef CONFIG_SMP
	check_irq_off();
2086
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2087 2088
#endif
}
2089

2090
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2091 2092 2093 2094 2095 2096 2097
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2098 2099 2100 2101
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2102
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107
#endif

/*
 * Waits for all CPUs to execute func().
 */
P
Pekka Enberg 已提交
2108
static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
{
	check_irq_on();
	preempt_disable();

	local_irq_disable();
	func(arg);
	local_irq_enable();

	if (smp_call_function(func, arg, 1, 1))
		BUG();

	preempt_enable();
}

2123
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
2124
				int force, int node);
L
Linus Torvalds 已提交
2125 2126 2127

static void do_drain(void *arg)
{
2128
	struct kmem_cache *cachep = (struct kmem_cache *) arg;
L
Linus Torvalds 已提交
2129
	struct array_cache *ac;
2130
	int node = numa_node_id();
L
Linus Torvalds 已提交
2131 2132

	check_irq_off();
2133
	ac = cpu_cache_get(cachep);
2134 2135 2136
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2137 2138 2139
	ac->avail = 0;
}

2140
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2141
{
2142 2143 2144
	struct kmem_list3 *l3;
	int node;

L
Linus Torvalds 已提交
2145 2146
	smp_call_function_all_cpus(do_drain, cachep);
	check_irq_on();
P
Pekka Enberg 已提交
2147
	for_each_online_node(node) {
2148 2149
		l3 = cachep->nodelists[node];
		if (l3) {
2150
			spin_lock_irq(&l3->list_lock);
2151
			drain_array_locked(cachep, l3->shared, 1, node);
2152
			spin_unlock_irq(&l3->list_lock);
2153
			if (l3->alien)
2154
				drain_alien_cache(cachep, l3->alien);
2155 2156
		}
	}
L
Linus Torvalds 已提交
2157 2158
}

2159
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2160 2161
{
	struct slab *slabp;
2162
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2163 2164
	int ret;

2165
	for (;;) {
L
Linus Torvalds 已提交
2166 2167
		struct list_head *p;

2168 2169
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2170 2171
			break;

2172
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178
#if DEBUG
		if (slabp->inuse)
			BUG();
#endif
		list_del(&slabp->list);

2179 2180
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2181
		slab_destroy(cachep, slabp);
2182
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2183
	}
P
Pekka Enberg 已提交
2184
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2185 2186 2187
	return ret;
}

2188
static int __cache_shrink(struct kmem_cache *cachep)
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212 2213
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2214
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
{
	if (!cachep || in_interrupt())
		BUG();

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2227
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2240
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2241 2242
{
	int i;
2243
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2244 2245 2246 2247 2248 2249 2250 2251

	if (!cachep || in_interrupt())
		BUG();

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2252
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2253 2254 2255 2256
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2257
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2258 2259 2260

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2261
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2262
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2263
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2264 2265 2266 2267 2268
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2269
		synchronize_rcu();
L
Linus Torvalds 已提交
2270

2271
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2272
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2273 2274

	/* NUMA: free the list3 structures */
2275 2276 2277 2278 2279 2280 2281
	for_each_online_node(i) {
		if ((l3 = cachep->nodelists[i])) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290
	kmem_cache_free(&cache_cache, cachep);

	unlock_cpu_hotplug();

	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2291
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2292
				   int colour_off, gfp_t local_flags)
L
Linus Torvalds 已提交
2293 2294
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2295

L
Linus Torvalds 已提交
2296 2297 2298 2299 2300 2301
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2302
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2303 2304 2305 2306
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2307
	slabp->s_mem = objp + colour_off;
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312 2313

	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2314
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2315 2316
}

2317
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2318
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2319 2320 2321 2322
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2323
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2341
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2342
				     ctor_flags);
L
Linus Torvalds 已提交
2343 2344 2345 2346

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2347
					   " end of an object");
L
Linus Torvalds 已提交
2348 2349
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2350
					   " start of an object");
L
Linus Torvalds 已提交
2351
		}
2352
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
P
Pekka Enberg 已提交
2353 2354
		    && cachep->flags & SLAB_POISON)
			kernel_map_pages(virt_to_page(objp),
2355
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2356 2357 2358 2359
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2360
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2361
	}
P
Pekka Enberg 已提交
2362
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2363 2364 2365
	slabp->free = 0;
}

2366
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
{
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
}

2377
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2378
{
2379
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

2393
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2394 2395
			  int nodeid)
{
2396
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

	if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
		printk(KERN_ERR "slab: double free detected in cache "
		       "'%s', objp %p\n", cachep->name, objp);
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2413
static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
L
Linus Torvalds 已提交
2414 2415 2416 2417 2418 2419 2420 2421
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
2422 2423
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429 2430 2431
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2432
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2433
{
P
Pekka Enberg 已提交
2434 2435 2436 2437 2438
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2439
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2440 2441

	/* Be lazy and only check for valid flags here,
P
Pekka Enberg 已提交
2442
	 * keeping it out of the critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2443
	 */
P
Pekka Enberg 已提交
2444
	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2458
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2459
	check_irq_off();
2460 2461
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2462 2463

	/* Get colour for the slab, and cal the next value. */
2464 2465 2466 2467 2468
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2469

2470
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

2483 2484 2485
	/* Get mem for the objs.
	 * Attempt to allocate a physical page from 'nodeid',
	 */
L
Linus Torvalds 已提交
2486 2487 2488 2489 2490 2491 2492
	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

2493
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499 2500
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2501
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2502 2503

	/* Make slab active. */
2504
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2505
	STATS_INC_GROWN(cachep);
2506 2507
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2508
	return 1;
P
Pekka Enberg 已提交
2509
      opps1:
L
Linus Torvalds 已提交
2510
	kmem_freepages(cachep, objp);
P
Pekka Enberg 已提交
2511
      failed:
L
Linus Torvalds 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2531 2532
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2533 2534 2535
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2536 2537
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2538 2539 2540 2541
		BUG();
	}
}

2542
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2543
				   void *caller)
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2549
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2550 2551 2552
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2553
	if (page_get_cache(page) != cachep) {
P
Pekka Enberg 已提交
2554 2555 2556
		printk(KERN_ERR
		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2557
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2558 2559
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2560 2561
		WARN_ON(1);
	}
2562
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2563 2564

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2574 2575 2576 2577 2578 2579 2580
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2581
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2582 2583

	BUG_ON(objnr >= cachep->num);
2584
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
2591
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2592
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2593 2594 2595 2596 2597
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2598
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2599 2600 2601
	}
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2602
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2603
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2604
			kernel_map_pages(virt_to_page(objp),
2605
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2616
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2617 2618 2619
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2620

L
Linus Torvalds 已提交
2621 2622 2623 2624 2625 2626 2627
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
P
Pekka Enberg 已提交
2628 2629 2630 2631 2632
	      bad:
		printk(KERN_ERR
		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
		       cachep->name, cachep->num, slabp, slabp->inuse);
		for (i = 0;
2633
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2634 2635
		     i++) {
			if ((i % 16) == 0)
L
Linus Torvalds 已提交
2636
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2637
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2649
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2650 2651 2652 2653 2654 2655
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2656
	ac = cpu_cache_get(cachep);
P
Pekka Enberg 已提交
2657
      retry:
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662 2663 2664 2665
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/* if there was little recent activity on this
		 * cache, then perform only a partial refill.
		 * Otherwise we could generate refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2666 2667 2668 2669
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2670 2671 2672 2673 2674 2675 2676 2677

	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
		if (shared_array->avail) {
			if (batchcount > shared_array->avail)
				batchcount = shared_array->avail;
			shared_array->avail -= batchcount;
			ac->avail = batchcount;
2678
			memcpy(ac->entry,
P
Pekka Enberg 已提交
2679 2680
			       &(shared_array->entry[shared_array->avail]),
			       sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
			shared_array->touched = 1;
			goto alloc_done;
		}
	}
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2705 2706
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

P
Pekka Enberg 已提交
2718
      must_grow:
L
Linus Torvalds 已提交
2719
	l3->free_objects -= ac->avail;
P
Pekka Enberg 已提交
2720
      alloc_done:
2721
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2722 2723 2724

	if (unlikely(!ac->avail)) {
		int x;
2725 2726
		x = cache_grow(cachep, flags, numa_node_id());

L
Linus Torvalds 已提交
2727
		// cache_grow can reenable interrupts, then ac could change.
2728
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2729 2730 2731
		if (!x && ac->avail == 0)	// no objects in sight? abort
			return NULL;

P
Pekka Enberg 已提交
2732
		if (!ac->avail)	// objects refilled by interrupt?
L
Linus Torvalds 已提交
2733 2734 2735
			goto retry;
	}
	ac->touched = 1;
2736
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2737 2738 2739
}

static inline void
2740
cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2741 2742 2743 2744 2745 2746 2747 2748
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
2749
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
P
Pekka Enberg 已提交
2750
					void *objp, void *caller)
L
Linus Torvalds 已提交
2751
{
P
Pekka Enberg 已提交
2752
	if (!objp)
L
Linus Torvalds 已提交
2753
		return objp;
P
Pekka Enberg 已提交
2754
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2755
#ifdef CONFIG_DEBUG_PAGEALLOC
2756
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2757
			kernel_map_pages(virt_to_page(objp),
2758
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2779 2780 2781 2782
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2783
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2784
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2785
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2786 2787 2788 2789 2790

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2791
	}
L
Linus Torvalds 已提交
2792 2793 2794 2795 2796 2797
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2798
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2799
{
P
Pekka Enberg 已提交
2800
	void *objp;
L
Linus Torvalds 已提交
2801 2802
	struct array_cache *ac;

2803
#ifdef CONFIG_NUMA
2804
	if (unlikely(current->mempolicy && !in_interrupt())) {
2805 2806 2807 2808 2809 2810 2811
		int nid = slab_node(current->mempolicy);

		if (nid != numa_node_id())
			return __cache_alloc_node(cachep, flags, nid);
	}
#endif

2812
	check_irq_off();
2813
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2814 2815 2816
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2817
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2818 2819 2820 2821
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2822 2823 2824
	return objp;
}

2825 2826
static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2827 2828
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2829
	void *objp;
2830 2831 2832 2833 2834

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2835
	local_irq_restore(save_flags);
2836
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2837
					    caller);
2838
	prefetchw(objp);
L
Linus Torvalds 已提交
2839 2840 2841
	return objp;
}

2842 2843 2844
#ifdef CONFIG_NUMA
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2845
 */
2846
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2847 2848
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

      retry:
2858
	check_irq_off();
P
Pekka Enberg 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

2878
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

	if (slabp->free == BUFCTL_END) {
		list_add(&slabp->list, &l3->slabs_full);
	} else {
		list_add(&slabp->list, &l3->slabs_partial);
	}
2889

P
Pekka Enberg 已提交
2890 2891
	spin_unlock(&l3->list_lock);
	goto done;
2892

P
Pekka Enberg 已提交
2893 2894 2895
      must_grow:
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2896

P
Pekka Enberg 已提交
2897 2898
	if (!x)
		return NULL;
2899

P
Pekka Enberg 已提交
2900 2901 2902
	goto retry;
      done:
	return obj;
2903 2904 2905 2906 2907 2908
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
2909
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
2910
		       int node)
L
Linus Torvalds 已提交
2911 2912
{
	int i;
2913
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2914 2915 2916 2917 2918

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

2919
		slabp = virt_to_slab(objp);
2920
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2921
		list_del(&slabp->list);
2922
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2923
		check_slabp(cachep, slabp);
2924
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
2925
		STATS_DEC_ACTIVE(cachep);
2926
		l3->free_objects++;
L
Linus Torvalds 已提交
2927 2928 2929 2930
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2931 2932
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2933 2934
				slab_destroy(cachep, slabp);
			} else {
2935
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940 2941
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
2942
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
2943 2944 2945 2946
		}
	}
}

2947
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
2948 2949
{
	int batchcount;
2950
	struct kmem_list3 *l3;
2951
	int node = numa_node_id();
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
2958
	l3 = cachep->nodelists[node];
2959 2960 2961
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
2962
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
2963 2964 2965
		if (max) {
			if (batchcount > max)
				batchcount = max;
2966
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
2967
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2968 2969 2970 2971 2972
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

2973
	free_block(cachep, ac->entry, batchcount, node);
P
Pekka Enberg 已提交
2974
      free_done:
L
Linus Torvalds 已提交
2975 2976 2977 2978 2979
#if STATS
	{
		int i = 0;
		struct list_head *p;

2980 2981
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
2993
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2994
	ac->avail -= batchcount;
2995
	memmove(ac->entry, &(ac->entry[batchcount]),
P
Pekka Enberg 已提交
2996
		sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005
}

/*
 * __cache_free
 * Release an obj back to its cache. If the obj has a constructed
 * state, it must be in this state _before_ it is released.
 *
 * Called with disabled ints.
 */
3006
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3007
{
3008
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3009 3010 3011 3012

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3013 3014 3015 3016 3017 3018
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
3019
		slabp = virt_to_slab(objp);
3020 3021 3022
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
P
Pekka Enberg 已提交
3023 3024
			struct kmem_list3 *l3 =
			    cachep->nodelists[numa_node_id()];
3025 3026 3027 3028 3029 3030 3031

			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
3032
							    alien, nodeid);
3033 3034 3035 3036
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
3037
					  list_lock);
3038
				free_block(cachep, &objp, 1, nodeid);
3039
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
3040
					    list_lock);
3041 3042 3043 3044 3045
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
3046 3047
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3048
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3049 3050 3051 3052
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3053
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3065
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3066
{
3067
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3085
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3086
{
P
Pekka Enberg 已提交
3087
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3088
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3089
	unsigned long align_mask = BYTES_PER_WORD - 1;
3090
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3106
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3107 3108
		goto out;
	return 1;
P
Pekka Enberg 已提交
3109
      out:
L
Linus Torvalds 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3123 3124
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3125
 */
3126
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3127
{
3128 3129
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3130

3131 3132
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3133 3134 3135

	if (nodeid == -1 || nodeid == numa_node_id() ||
	    !cachep->nodelists[nodeid])
3136 3137 3138
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3139
	local_irq_restore(save_flags);
3140 3141 3142

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3143

3144
	return ptr;
L
Linus Torvalds 已提交
3145 3146 3147
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3148
void *kmalloc_node(size_t size, gfp_t flags, int node)
3149
{
3150
	struct kmem_cache *cachep;
3151 3152 3153 3154 3155 3156 3157

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3181 3182
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3183
{
3184
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3185

3186 3187 3188 3189 3190 3191
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3192 3193
	if (unlikely(cachep == NULL))
		return NULL;
3194 3195 3196 3197 3198 3199 3200 3201
	return __cache_alloc(cachep, flags, caller);
}

#ifndef CONFIG_DEBUG_SLAB

void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
L
Linus Torvalds 已提交
3202 3203 3204
}
EXPORT_SYMBOL(__kmalloc);

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
#else

void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);

#endif

L
Linus Torvalds 已提交
3215 3216 3217 3218 3219 3220 3221 3222
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3223
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3224 3225
{
	int i;
P
Pekka Enberg 已提交
3226
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3227 3228 3229 3230

	if (!pdata)
		return NULL;

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
	for_each_cpu(i) {
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3243 3244 3245 3246 3247 3248 3249

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3250
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3251

P
Pekka Enberg 已提交
3252
      unwind_oom:
L
Linus Torvalds 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3272
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3286 3287
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3288 3289 3290 3291 3292
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3293
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3294 3295 3296 3297 3298 3299
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3300
	c = virt_to_cache(objp);
3301
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3302
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3315
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3316 3317
{
	int i;
P
Pekka Enberg 已提交
3318
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3319

3320 3321 3322 3323
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
	for_each_cpu(i)
P
Pekka Enberg 已提交
3324
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3325 3326 3327 3328 3329
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3330
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3331
{
3332
	return obj_size(cachep);
L
Linus Torvalds 已提交
3333 3334 3335
}
EXPORT_SYMBOL(kmem_cache_size);

3336
const char *kmem_cache_name(struct kmem_cache *cachep)
3337 3338 3339 3340 3341
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3342 3343 3344
/*
 * This initializes kmem_list3 for all nodes.
 */
3345
static int alloc_kmemlist(struct kmem_cache *cachep)
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
{
	int node;
	struct kmem_list3 *l3;
	int err = 0;

	for_each_online_node(node) {
		struct array_cache *nc = NULL, *new;
		struct array_cache **new_alien = NULL;
#ifdef CONFIG_NUMA
		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
			goto fail;
#endif
P
Pekka Enberg 已提交
3358 3359 3360
		if (!(new = alloc_arraycache(node, (cachep->shared *
						    cachep->batchcount),
					     0xbaadf00d)))
3361 3362 3363 3364 3365 3366
			goto fail;
		if ((l3 = cachep->nodelists[node])) {

			spin_lock_irq(&l3->list_lock);

			if ((nc = cachep->nodelists[node]->shared))
P
Pekka Enberg 已提交
3367
				free_block(cachep, nc->entry, nc->avail, node);
3368 3369 3370 3371 3372 3373

			l3->shared = new;
			if (!cachep->nodelists[node]->alien) {
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3374 3375
			l3->free_limit = (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
3376 3377 3378 3379 3380 3381
			spin_unlock_irq(&l3->list_lock);
			kfree(nc);
			free_alien_cache(new_alien);
			continue;
		}
		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
P
Pekka Enberg 已提交
3382
					GFP_KERNEL, node)))
3383 3384 3385 3386
			goto fail;

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
3387
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3388 3389
		l3->shared = new;
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3390 3391
		l3->free_limit = (1 + nr_cpus_node(node)) *
		    cachep->batchcount + cachep->num;
3392 3393 3394
		cachep->nodelists[node] = l3;
	}
	return err;
P
Pekka Enberg 已提交
3395
      fail:
3396 3397 3398 3399
	err = -ENOMEM;
	return err;
}

L
Linus Torvalds 已提交
3400
struct ccupdate_struct {
3401
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
	struct array_cache *old;

	check_irq_off();
3411
	old = cpu_cache_get(new->cachep);
3412

L
Linus Torvalds 已提交
3413 3414 3415 3416
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3417
static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
P
Pekka Enberg 已提交
3418
			    int shared)
L
Linus Torvalds 已提交
3419 3420
{
	struct ccupdate_struct new;
3421
	int i, err;
L
Linus Torvalds 已提交
3422

P
Pekka Enberg 已提交
3423
	memset(&new.new, 0, sizeof(new.new));
3424
	for_each_online_cpu(i) {
P
Pekka Enberg 已提交
3425 3426
		new.new[i] =
		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3427
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3428 3429
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3430
			return -ENOMEM;
L
Linus Torvalds 已提交
3431 3432 3433 3434 3435
		}
	}
	new.cachep = cachep;

	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3436

L
Linus Torvalds 已提交
3437
	check_irq_on();
3438
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3439 3440
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3441
	cachep->shared = shared;
3442
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3443

3444
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3445 3446 3447
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3448
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3449
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3450
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3451 3452 3453
		kfree(ccold);
	}

3454 3455 3456
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3457
		       cachep->name, -err);
3458
		BUG();
L
Linus Torvalds 已提交
3459 3460 3461 3462
	}
	return 0;
}

3463
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
{
	int err;
	int limit, shared;

	/* The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and 
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3476
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3477
		limit = 1;
3478
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3479
		limit = 8;
3480
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3481
		limit = 24;
3482
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		limit = 54;
	else
		limit = 120;

	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3497
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
		shared = 8;
#endif

#if DEBUG
	/* With debugging enabled, large batchcount lead to excessively
	 * long periods with disabled local interrupts. Limit the 
	 * batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3509
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3510 3511
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3512
		       cachep->name, -err);
L
Linus Torvalds 已提交
3513 3514
}

3515
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
3516
				int force, int node)
L
Linus Torvalds 已提交
3517 3518 3519
{
	int tofree;

3520
	check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3521 3522 3523
	if (ac->touched && !force) {
		ac->touched = 0;
	} else if (ac->avail) {
P
Pekka Enberg 已提交
3524
		tofree = force ? ac->avail : (ac->limit + 4) / 5;
L
Linus Torvalds 已提交
3525
		if (tofree > ac->avail) {
P
Pekka Enberg 已提交
3526
			tofree = (ac->avail + 1) / 2;
L
Linus Torvalds 已提交
3527
		}
3528
		free_block(cachep, ac->entry, tofree, node);
L
Linus Torvalds 已提交
3529
		ac->avail -= tofree;
3530
		memmove(ac->entry, &(ac->entry[tofree]),
P
Pekka Enberg 已提交
3531
			sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3537
 * @unused: unused parameter
L
Linus Torvalds 已提交
3538 3539 3540 3541 3542 3543
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
I
Ingo Molnar 已提交
3544
 * If we cannot acquire the cache chain mutex then just give up - we'll
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549
 * try again on the next iteration.
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3550
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3551

I
Ingo Molnar 已提交
3552
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3553
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3554 3555
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3556 3557 3558 3559
		return;
	}

	list_for_each(walk, &cache_chain) {
3560
		struct kmem_cache *searchp;
P
Pekka Enberg 已提交
3561
		struct list_head *p;
L
Linus Torvalds 已提交
3562 3563 3564
		int tofree;
		struct slab *slabp;

3565
		searchp = list_entry(walk, struct kmem_cache, next);
L
Linus Torvalds 已提交
3566 3567 3568 3569 3570 3571

		if (searchp->flags & SLAB_NO_REAP)
			goto next;

		check_irq_on();

3572
		l3 = searchp->nodelists[numa_node_id()];
3573
		reap_alien(searchp, l3);
3574
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3575

3576
		drain_array_locked(searchp, cpu_cache_get(searchp), 0,
P
Pekka Enberg 已提交
3577
				   numa_node_id());
L
Linus Torvalds 已提交
3578

3579
		if (time_after(l3->next_reap, jiffies))
L
Linus Torvalds 已提交
3580 3581
			goto next_unlock;

3582
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3583

3584 3585
		if (l3->shared)
			drain_array_locked(searchp, l3->shared, 0,
P
Pekka Enberg 已提交
3586
					   numa_node_id());
L
Linus Torvalds 已提交
3587

3588 3589
		if (l3->free_touched) {
			l3->free_touched = 0;
L
Linus Torvalds 已提交
3590 3591 3592
			goto next_unlock;
		}

P
Pekka Enberg 已提交
3593 3594 3595
		tofree =
		    (l3->free_limit + 5 * searchp->num -
		     1) / (5 * searchp->num);
L
Linus Torvalds 已提交
3596
		do {
3597 3598
			p = l3->slabs_free.next;
			if (p == &(l3->slabs_free))
L
Linus Torvalds 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
				break;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

			/* Safe to drop the lock. The slab is no longer
			 * linked to the cache.
			 * searchp cannot disappear, we hold
			 * cache_chain_lock
			 */
3611 3612
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3613
			slab_destroy(searchp, slabp);
3614
			spin_lock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3615 3616
		} while (--tofree > 0);
	      next_unlock:
3617
		spin_unlock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3618
	      next:
L
Linus Torvalds 已提交
3619 3620 3621
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3622
	mutex_unlock(&cache_chain_mutex);
3623
	next_reap_node();
L
Linus Torvalds 已提交
3624
	/* Setup the next iteration */
3625
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3626 3627 3628 3629
}

#ifdef CONFIG_PROC_FS

3630
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3631
{
3632 3633 3634 3635
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3636
#if STATS
3637
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3638
#else
3639
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3640
#endif
3641 3642 3643 3644
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3645
#if STATS
3646 3647 3648
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3649
#endif
3650 3651 3652 3653 3654 3655 3656 3657
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3658
	mutex_lock(&cache_chain_mutex);
3659 3660
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3661 3662 3663 3664 3665 3666
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3667
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3668 3669 3670 3671
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3672
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3673 3674
	++*pos;
	return cachep->next.next == &cache_chain ? NULL
3675
	    : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3676 3677 3678 3679
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3680
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3681 3682 3683 3684
}

static int s_show(struct seq_file *m, void *p)
{
3685
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3686
	struct list_head *q;
P
Pekka Enberg 已提交
3687 3688 3689 3690 3691
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3692
	const char *name;
L
Linus Torvalds 已提交
3693
	char *error = NULL;
3694 3695
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3696

3697
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3698 3699
	active_objs = 0;
	num_slabs = 0;
3700 3701 3702 3703 3704
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3705 3706
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3707

P
Pekka Enberg 已提交
3708
		list_for_each(q, &l3->slabs_full) {
3709 3710 3711 3712 3713 3714
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3715
		list_for_each(q, &l3->slabs_partial) {
3716 3717 3718 3719 3720 3721 3722 3723
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3724
		list_for_each(q, &l3->slabs_free) {
3725 3726 3727 3728 3729 3730
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3731 3732
		if (l3->shared)
			shared_avail += l3->shared->avail;
3733

3734
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3735
	}
P
Pekka Enberg 已提交
3736 3737
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3738
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3739 3740
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3741
	name = cachep->name;
L
Linus Torvalds 已提交
3742 3743 3744 3745
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3746
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3747
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3748
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3749
		   cachep->limit, cachep->batchcount, cachep->shared);
3750
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3751
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3752
#if STATS
P
Pekka Enberg 已提交
3753
	{			/* list3 stats */
L
Linus Torvalds 已提交
3754 3755 3756 3757 3758 3759 3760
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3761
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3762

3763
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
P
Pekka Enberg 已提交
3764
				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
L
Linus Torvalds 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3774
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3775 3776 3777
	}
#endif
	seq_putc(m, '\n');
3778
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3797 3798 3799 3800
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3811 3812
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3813
{
P
Pekka Enberg 已提交
3814
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3815 3816
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3817

L
Linus Torvalds 已提交
3818 3819 3820 3821
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3822
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3833
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3834
	res = -EINVAL;
P
Pekka Enberg 已提交
3835
	list_for_each(p, &cache_chain) {
3836 3837
		struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
						       next);
L
Linus Torvalds 已提交
3838 3839 3840 3841

		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 ||
			    batchcount < 1 ||
P
Pekka Enberg 已提交
3842
			    batchcount > limit || shared < 0) {
3843
				res = 0;
L
Linus Torvalds 已提交
3844
			} else {
3845
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3846
						       batchcount, shared);
L
Linus Torvalds 已提交
3847 3848 3849 3850
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3851
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3852 3853 3854 3855 3856 3857
	if (res >= 0)
		res = count;
	return res;
}
#endif

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
3870 3871
unsigned int ksize(const void *objp)
{
3872 3873
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
3874

3875
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
3876
}