hugetlb.c 61.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}

238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

251 252 253 254 255 256 257
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
258
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259

260 261 262 263 264 265 266 267 268
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
269 270 271 272 273 274 275 276 277
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
278
 */
279 280 281 282 283 284 285 286 287 288 289
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

290 291 292 293 294
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

295
static struct resv_map *resv_map_alloc(void)
296 297 298 299 300 301 302 303 304 305 306
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

307
static void resv_map_release(struct kref *ref)
308 309 310 311 312 313 314 315 316
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317 318
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
319
	if (!(vma->vm_flags & VM_MAYSHARE))
320 321
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
322
	return NULL;
323 324
}

325
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326 327
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
328
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
329

330 331
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
332 333 334 335 336
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
338 339

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340 341 342 343 344
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345 346

	return (get_vma_private_data(vma) & flag) != 0;
347 348 349
}

/* Decrement the reserved pages in the hugepage pool by one */
350 351
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
352
{
353 354 355
	if (vma->vm_flags & VM_NORESERVE)
		return;

356
	if (vma->vm_flags & VM_MAYSHARE) {
357
		/* Shared mappings always use reserves */
358
		h->resv_huge_pages--;
359
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360 361 362 363
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
364
		h->resv_huge_pages--;
365 366 367
	}
}

368
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369 370 371
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
372
	if (!(vma->vm_flags & VM_MAYSHARE))
373 374 375 376
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
377
static int vma_has_reserves(struct vm_area_struct *vma)
378
{
379
	if (vma->vm_flags & VM_MAYSHARE)
380 381 382 383
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
398 399
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
400 401 402
{
	int i;

H
Hannes Eder 已提交
403 404 405 406
	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, sz);
		return;
	}
407

408
	might_sleep();
409
	for (i = 0; i < sz/PAGE_SIZE; i++) {
410
		cond_resched();
411
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
412 413 414
	}
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
432
static void copy_huge_page(struct page *dst, struct page *src,
433
			   unsigned long addr, struct vm_area_struct *vma)
434 435
{
	int i;
436
	struct hstate *h = hstate_vma(vma);
437

H
Hannes Eder 已提交
438 439 440 441
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
442

443
	might_sleep();
444
	for (i = 0; i < pages_per_huge_page(h); i++) {
445
		cond_resched();
446
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
447 448 449
	}
}

450
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
451 452
{
	int nid = page_to_nid(page);
453 454 455
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
456 457
}

458
static struct page *dequeue_huge_page(struct hstate *h)
459 460 461 462 463
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
464 465
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
466 467
					  struct page, lru);
			list_del(&page->lru);
468 469
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
470 471 472 473 474 475
			break;
		}
	}
	return page;
}

476 477
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
478
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
479
{
480
	int nid;
L
Linus Torvalds 已提交
481
	struct page *page = NULL;
482
	struct mempolicy *mpol;
483
	nodemask_t *nodemask;
484
	struct zonelist *zonelist = huge_zonelist(vma, address,
485
					htlb_alloc_mask, &mpol, &nodemask);
486 487
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
488

489 490 491 492 493
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
494
	if (!vma_has_reserves(vma) &&
495
			h->free_huge_pages - h->resv_huge_pages == 0)
496 497
		return NULL;

498
	/* If reserves cannot be used, ensure enough pages are in the pool */
499
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
500 501
		return NULL;

502 503
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
504 505
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
506 507
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
508 509
					  struct page, lru);
			list_del(&page->lru);
510 511
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
512 513

			if (!avoid_reserve)
514
				decrement_hugepage_resv_vma(h, vma);
515

K
Ken Chen 已提交
516
			break;
A
Andrew Morton 已提交
517
		}
L
Linus Torvalds 已提交
518
	}
519
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
520 521 522
	return page;
}

523
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
524 525
{
	int i;
526

527 528
	VM_BUG_ON(h->order >= MAX_ORDER);

529 530 531
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
532 533 534 535 536 537
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
538
	arch_release_hugepage(page);
539
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
540 541
}

542 543 544 545 546 547 548 549 550 551 552
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

553 554
static void free_huge_page(struct page *page)
{
555 556 557 558
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
559
	struct hstate *h = page_hstate(page);
560
	int nid = page_to_nid(page);
561
	struct address_space *mapping;
562

563
	mapping = (struct address_space *) page_private(page);
564
	set_page_private(page, 0);
565
	BUG_ON(page_count(page));
566 567 568
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
569
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
570 571 572
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
573
	} else {
574
		enqueue_huge_page(h, page);
575
	}
576
	spin_unlock(&hugetlb_lock);
577
	if (mapping)
578
		hugetlb_put_quota(mapping, 1);
579 580
}

581
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
582 583 584
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
585 586
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
587 588 589 590
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

619
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
620 621
{
	struct page *page;
622

623 624 625
	if (h->order >= MAX_ORDER)
		return NULL;

626
	page = alloc_pages_exact_node(nid,
627 628
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
629
		huge_page_order(h));
L
Linus Torvalds 已提交
630
	if (page) {
631
		if (arch_prepare_hugepage(page)) {
632
			__free_pages(page, huge_page_order(h));
633
			return NULL;
634
		}
635
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
636
	}
637 638 639 640

	return page;
}

641 642 643 644
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
645
 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

662
static int alloc_fresh_huge_page(struct hstate *h)
663 664 665 666 667 668
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

669
	start_nid = h->hugetlb_next_nid;
670 671

	do {
672
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
673 674
		if (page)
			ret = 1;
675
		next_nid = hstate_next_node(h);
676
	} while (!page && h->hugetlb_next_nid != start_nid);
677

678 679 680 681 682
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

683
	return ret;
L
Linus Torvalds 已提交
684 685
}

686 687
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
688 689
{
	struct page *page;
690
	unsigned int nid;
691

692 693 694
	if (h->order >= MAX_ORDER)
		return NULL;

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
719
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
720 721 722
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
723 724
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
725 726 727
	}
	spin_unlock(&hugetlb_lock);

728 729
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
730
					huge_page_order(h));
731

732 733 734 735 736
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

737
	spin_lock(&hugetlb_lock);
738
	if (page) {
739 740 741 742 743 744
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
745
		nid = page_to_nid(page);
746
		set_compound_page_dtor(page, free_huge_page);
747 748 749
		/*
		 * We incremented the global counters already
		 */
750 751
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
752
		__count_vm_event(HTLB_BUDDY_PGALLOC);
753
	} else {
754 755
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
756
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
757
	}
758
	spin_unlock(&hugetlb_lock);
759 760 761 762

	return page;
}

763 764 765 766
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
767
static int gather_surplus_pages(struct hstate *h, int delta)
768 769 770 771 772 773
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

774
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
775
	if (needed <= 0) {
776
		h->resv_huge_pages += delta;
777
		return 0;
778
	}
779 780 781 782 783 784 785 786

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
787
		page = alloc_buddy_huge_page(h, NULL, 0);
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
808 809
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
810 811 812 813 814 815 816
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
817 818 819
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
820 821
	 */
	needed += allocated;
822
	h->resv_huge_pages += delta;
823 824
	ret = 0;
free:
825
	/* Free the needed pages to the hugetlb pool */
826
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
827 828
		if ((--needed) < 0)
			break;
829
		list_del(&page->lru);
830
		enqueue_huge_page(h, page);
831 832 833 834 835 836 837
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
838
			/*
839 840 841
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
842 843 844
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
845
			free_huge_page(page);
846
		}
847
		spin_lock(&hugetlb_lock);
848 849 850 851 852 853 854 855 856 857
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
858 859
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
860 861 862 863 864
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

865 866 867 868 869 870
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
871
	unsigned long remaining_iterations = nr_online_nodes;
872

873
	/* Uncommit the reservation */
874
	h->resv_huge_pages -= unused_resv_pages;
875

876 877 878 879
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

880
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
881

882
	while (remaining_iterations-- && nr_pages) {
883 884 885 886
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

887
		if (!h->surplus_huge_pages_node[nid])
888 889
			continue;

890 891
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
892 893
					  struct page, lru);
			list_del(&page->lru);
894 895 896 897 898
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
899
			nr_pages--;
900
			remaining_iterations = nr_online_nodes;
901 902 903 904
		}
	}
}

905 906 907 908 909 910 911 912 913
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
914
static long vma_needs_reservation(struct hstate *h,
915
			struct vm_area_struct *vma, unsigned long addr)
916 917 918 919
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

920
	if (vma->vm_flags & VM_MAYSHARE) {
921
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
922 923 924
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

925 926
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
927

928
	} else  {
929
		long err;
930
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
931 932 933 934 935 936 937
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
938
}
939 940
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
941 942 943 944
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

945
	if (vma->vm_flags & VM_MAYSHARE) {
946
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
947
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
948 949

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
950
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
951 952 953 954
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
955 956 957
	}
}

958
static struct page *alloc_huge_page(struct vm_area_struct *vma,
959
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
960
{
961
	struct hstate *h = hstate_vma(vma);
962
	struct page *page;
963 964
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
965
	long chg;
966 967 968 969 970

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
971 972
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
973
	 */
974
	chg = vma_needs_reservation(h, vma, addr);
975 976 977
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
978 979
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
980 981

	spin_lock(&hugetlb_lock);
982
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
983
	spin_unlock(&hugetlb_lock);
984

K
Ken Chen 已提交
985
	if (!page) {
986
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
987
		if (!page) {
988
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
989 990 991
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
992

993 994
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
995

996
	vma_commit_reservation(h, vma, addr);
997

998
	return page;
999 1000
}

1001
int __weak alloc_bootmem_huge_page(struct hstate *h)
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1020
			goto found;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1035 1036 1037 1038 1039 1040 1041 1042
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1053
		prep_compound_huge_page(page, h->order);
1054 1055 1056 1057
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1058
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1059 1060
{
	unsigned long i;
1061

1062
	for (i = 0; i < h->max_huge_pages; ++i) {
1063 1064 1065 1066
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
1067 1068
			break;
	}
1069
	h->max_huge_pages = i;
1070 1071 1072 1073 1074 1075 1076
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1077 1078 1079
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1080 1081 1082
	}
}

A
Andi Kleen 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1094 1095 1096 1097 1098
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1099 1100 1101 1102 1103
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1104 1105 1106
	}
}

L
Linus Torvalds 已提交
1107
#ifdef CONFIG_HIGHMEM
1108
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1109
{
1110 1111
	int i;

1112 1113 1114
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1115 1116
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1117 1118 1119
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1120
				return;
L
Linus Torvalds 已提交
1121 1122 1123
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1124
			update_and_free_page(h, page);
1125 1126
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1127 1128 1129 1130
		}
	}
}
#else
1131
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1132 1133 1134 1135
{
}
#endif

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(struct hstate *h, int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
			continue;

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

1171
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1172
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1173
{
1174
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1175

1176 1177 1178
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1179 1180 1181 1182
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1183 1184 1185 1186 1187 1188
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1189
	 */
L
Linus Torvalds 已提交
1190
	spin_lock(&hugetlb_lock);
1191 1192
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1193 1194 1195
			break;
	}

1196
	while (count > persistent_huge_pages(h)) {
1197 1198 1199 1200 1201 1202
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1203
		ret = alloc_fresh_huge_page(h);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1216 1217 1218 1219 1220 1221 1222 1223
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1224
	 */
1225
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1226
	min_count = max(count, min_count);
1227 1228 1229
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1230 1231
		if (!page)
			break;
1232
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1233
	}
1234 1235
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1236 1237 1238
			break;
	}
out:
1239
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1240
	spin_unlock(&hugetlb_lock);
1241
	return ret;
L
Linus Torvalds 已提交
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1397 1398 1399 1400 1401 1402
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1403

1404 1405 1406 1407
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1408
	}
1409 1410 1411
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1412 1413 1414

	hugetlb_init_hstates();

1415 1416
	gather_bootmem_prealloc();

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1429 1430
	unsigned long i;

1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1440 1441 1442 1443 1444
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1445 1446
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1447

1448 1449 1450
	parsed_hstate = h;
}

1451
static int __init hugetlb_nrpages_setup(char *s)
1452 1453
{
	unsigned long *mhp;
1454
	static unsigned long *last_mhp;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1465 1466 1467 1468 1469 1470
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1471 1472 1473
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1484 1485
	return 1;
}
1486 1487 1488 1489 1490 1491 1492 1493
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1507 1508 1509 1510
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1511 1512 1513 1514 1515 1516 1517 1518
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1519
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1520 1521 1522 1523

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1524 1525
	return 0;
}
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1539 1540 1541 1542
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1543
	struct hstate *h = &default_hstate;
1544 1545 1546 1547 1548 1549 1550
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1551
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1552 1553 1554 1555 1556 1557 1558

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1559 1560 1561
	return 0;
}

L
Linus Torvalds 已提交
1562 1563
#endif /* CONFIG_SYSCTL */

1564
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1565
{
1566
	struct hstate *h = &default_hstate;
1567
	seq_printf(m,
1568 1569 1570 1571 1572
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1573 1574 1575 1576 1577
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1578 1579 1580 1581
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1582
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1583 1584
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1585 1586
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1587 1588 1589
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1595 1596
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1597 1598
}

1599
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1622
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1623 1624
			goto out;

1625 1626
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1627 1628 1629 1630 1631 1632
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1633
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1634 1635 1636 1637 1638 1639

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1656 1657
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1658
	struct hstate *h = hstate_vma(vma);
1659 1660 1661 1662 1663 1664
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1665 1666
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1667 1668 1669 1670 1671 1672

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1673
		if (reserve) {
1674
			hugetlb_acct_memory(h, -reserve);
1675 1676
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1677
	}
1678 1679
}

L
Linus Torvalds 已提交
1680 1681 1682 1683 1684 1685
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1686
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1687 1688
{
	BUG();
N
Nick Piggin 已提交
1689
	return 0;
L
Linus Torvalds 已提交
1690 1691 1692
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1693
	.fault = hugetlb_vm_op_fault,
1694
	.open = hugetlb_vm_op_open,
1695
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1696 1697
};

1698 1699
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1700 1701 1702
{
	pte_t entry;

1703
	if (writable) {
D
David Gibson 已提交
1704 1705 1706
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1707
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1708 1709 1710 1711 1712 1713 1714
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1715 1716 1717 1718 1719
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1720 1721
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1722 1723
		update_mmu_cache(vma, address, entry);
	}
1724 1725 1726
}


D
David Gibson 已提交
1727 1728 1729 1730 1731
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1732
	unsigned long addr;
1733
	int cow;
1734 1735
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1736 1737

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1738

1739
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1740 1741 1742
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1743
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1744 1745
		if (!dst_pte)
			goto nomem;
1746 1747 1748 1749 1750

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1751
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1752
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1753
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1754
			if (cow)
1755 1756
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1757 1758 1759 1760 1761
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1762
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1763 1764 1765 1766 1767 1768 1769
	}
	return 0;

nomem:
	return -ENOMEM;
}

1770
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1771
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1772 1773 1774
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1775
	pte_t *ptep;
D
David Gibson 已提交
1776 1777
	pte_t pte;
	struct page *page;
1778
	struct page *tmp;
1779 1780 1781
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1782 1783 1784 1785 1786
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1787
	LIST_HEAD(page_list);
D
David Gibson 已提交
1788 1789

	WARN_ON(!is_vm_hugetlb_page(vma));
1790 1791
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1792

A
Andrea Arcangeli 已提交
1793
	mmu_notifier_invalidate_range_start(mm, start, end);
1794
	spin_lock(&mm->page_table_lock);
1795
	for (address = start; address < end; address += sz) {
1796
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1797
		if (!ptep)
1798 1799
			continue;

1800 1801 1802
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1824
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1825
		if (huge_pte_none(pte))
D
David Gibson 已提交
1826
			continue;
1827

D
David Gibson 已提交
1828
		page = pte_page(pte);
1829 1830
		if (pte_dirty(pte))
			set_page_dirty(page);
1831
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1832
	}
L
Linus Torvalds 已提交
1833
	spin_unlock(&mm->page_table_lock);
1834
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1835
	mmu_notifier_invalidate_range_end(mm, start, end);
1836 1837 1838 1839
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1840
}
D
David Gibson 已提交
1841

1842
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1843
			  unsigned long end, struct page *ref_page)
1844
{
1845 1846 1847
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1848 1849
}

1850 1851 1852 1853 1854 1855
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1856 1857
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1858
{
1859
	struct hstate *h = hstate_vma(vma);
1860 1861 1862 1863 1864 1865 1866 1867 1868
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
1869
	address = address & huge_page_mask(h);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
1888
				address, address + huge_page_size(h),
1889 1890 1891 1892 1893 1894
				page);
	}

	return 1;
}

1895
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1896 1897
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1898
{
1899
	struct hstate *h = hstate_vma(vma);
1900
	struct page *old_page, *new_page;
1901
	int avoidcopy;
1902
	int outside_reserve = 0;
1903 1904 1905

	old_page = pte_page(pte);

1906
retry_avoidcopy:
1907 1908 1909 1910 1911
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1912
		return 0;
1913 1914
	}

1915 1916 1917 1918 1919 1920 1921 1922 1923
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
1924
	if (!(vma->vm_flags & VM_MAYSHARE) &&
1925 1926 1927 1928
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1929
	page_cache_get(old_page);
1930
	new_page = alloc_huge_page(vma, address, outside_reserve);
1931

1932
	if (IS_ERR(new_page)) {
1933
		page_cache_release(old_page);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1952
		return -PTR_ERR(new_page);
1953 1954 1955
	}

	spin_unlock(&mm->page_table_lock);
1956
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1957
	__SetPageUptodate(new_page);
1958 1959
	spin_lock(&mm->page_table_lock);

1960
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1961
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1962
		/* Break COW */
1963
		huge_ptep_clear_flush(vma, address, ptep);
1964 1965 1966 1967 1968 1969 1970
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1971
	return 0;
1972 1973
}

1974
/* Return the pagecache page at a given address within a VMA */
1975 1976
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1977 1978
{
	struct address_space *mapping;
1979
	pgoff_t idx;
1980 1981

	mapping = vma->vm_file->f_mapping;
1982
	idx = vma_hugecache_offset(h, vma, address);
1983 1984 1985 1986

	return find_lock_page(mapping, idx);
}

1987
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1988
			unsigned long address, pte_t *ptep, int write_access)
1989
{
1990
	struct hstate *h = hstate_vma(vma);
1991
	int ret = VM_FAULT_SIGBUS;
1992
	pgoff_t idx;
A
Adam Litke 已提交
1993 1994 1995
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1996
	pte_t new_pte;
A
Adam Litke 已提交
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2010
	mapping = vma->vm_file->f_mapping;
2011
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2012 2013 2014 2015 2016

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2017 2018 2019
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2020
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2021 2022
		if (idx >= size)
			goto out;
2023
		page = alloc_huge_page(vma, address, 0);
2024 2025
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2026 2027
			goto out;
		}
2028
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2029
		__SetPageUptodate(page);
2030

2031
		if (vma->vm_flags & VM_MAYSHARE) {
2032
			int err;
K
Ken Chen 已提交
2033
			struct inode *inode = mapping->host;
2034 2035 2036 2037 2038 2039 2040 2041

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2042 2043

			spin_lock(&inode->i_lock);
2044
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2045
			spin_unlock(&inode->i_lock);
2046 2047 2048
		} else
			lock_page(page);
	}
2049

2050 2051 2052 2053 2054 2055 2056
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED))
2057 2058 2059 2060
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2061

2062
	spin_lock(&mm->page_table_lock);
2063
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2064 2065 2066
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2067
	ret = 0;
2068
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2069 2070
		goto backout;

2071 2072 2073 2074 2075 2076
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
2077
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2078 2079
	}

2080
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2081 2082
	unlock_page(page);
out:
2083
	return ret;
A
Adam Litke 已提交
2084 2085 2086

backout:
	spin_unlock(&mm->page_table_lock);
2087
backout_unlocked:
A
Adam Litke 已提交
2088 2089 2090
	unlock_page(page);
	put_page(page);
	goto out;
2091 2092
}

2093 2094 2095 2096 2097
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
2098
	int ret;
2099
	struct page *pagecache_page = NULL;
2100
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2101
	struct hstate *h = hstate_vma(vma);
2102

2103
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2104 2105 2106
	if (!ptep)
		return VM_FAULT_OOM;

2107 2108 2109 2110 2111 2112
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2113 2114
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2115
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2116
		goto out_mutex;
2117
	}
2118

N
Nick Piggin 已提交
2119
	ret = 0;
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
	if (write_access && !pte_write(entry)) {
2130 2131
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2132
			goto out_mutex;
2133
		}
2134

2135
		if (!(vma->vm_flags & VM_MAYSHARE))
2136 2137 2138 2139
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2140 2141
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2142 2143 2144 2145 2146 2147
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


	if (write_access) {
		if (!pte_write(entry)) {
2148 2149
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2150 2151 2152 2153 2154 2155 2156 2157 2158
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2159
	spin_unlock(&mm->page_table_lock);
2160 2161 2162 2163 2164 2165

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2166
out_mutex:
2167
	mutex_unlock(&hugetlb_instantiation_mutex);
2168 2169

	return ret;
2170 2171
}

A
Andi Kleen 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

K
KOSAKI Motohiro 已提交
2181 2182 2183 2184 2185 2186 2187 2188
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
	if (!ptep || write || shared)
		return 0;
	else
		return huge_pte_none(huge_ptep_get(ptep));
}

D
David Gibson 已提交
2189 2190
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2191 2192
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2193
{
2194 2195
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2196
	int remainder = *length;
2197
	struct hstate *h = hstate_vma(vma);
K
KOSAKI Motohiro 已提交
2198 2199
	int zeropage_ok = 0;
	int shared = vma->vm_flags & VM_SHARED;
D
David Gibson 已提交
2200

2201
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2202
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2203 2204
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2205

A
Adam Litke 已提交
2206 2207 2208 2209 2210
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2211
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
K
KOSAKI Motohiro 已提交
2212 2213
		if (huge_zeropage_ok(pte, write, shared))
			zeropage_ok = 1;
D
David Gibson 已提交
2214

K
KOSAKI Motohiro 已提交
2215 2216
		if (!pte ||
		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2217
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2218
			int ret;
D
David Gibson 已提交
2219

A
Adam Litke 已提交
2220
			spin_unlock(&mm->page_table_lock);
2221
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2222
			spin_lock(&mm->page_table_lock);
2223
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2224
				continue;
D
David Gibson 已提交
2225

A
Adam Litke 已提交
2226 2227 2228 2229 2230 2231
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2232
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2233
		page = pte_page(huge_ptep_get(pte));
2234
same_page:
2235
		if (pages) {
K
KOSAKI Motohiro 已提交
2236 2237 2238
			if (zeropage_ok)
				pages[i] = ZERO_PAGE(0);
			else
2239
				pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2240
			get_page(pages[i]);
2241
		}
D
David Gibson 已提交
2242 2243 2244 2245 2246

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2247
		++pfn_offset;
D
David Gibson 已提交
2248 2249
		--remainder;
		++i;
2250
		if (vaddr < vma->vm_end && remainder &&
2251
				pfn_offset < pages_per_huge_page(h)) {
2252 2253 2254 2255 2256 2257
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2258
	}
2259
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2260 2261 2262 2263 2264
	*length = remainder;
	*position = vaddr;

	return i;
}
2265 2266 2267 2268 2269 2270 2271 2272

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2273
	struct hstate *h = hstate_vma(vma);
2274 2275 2276 2277

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2278
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2279
	spin_lock(&mm->page_table_lock);
2280
	for (; address < end; address += huge_page_size(h)) {
2281 2282 2283
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2284 2285
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2286
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2287 2288 2289 2290 2291 2292
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2293
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2294 2295 2296 2297

	flush_tlb_range(vma, start, end);
}

2298 2299
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2300 2301
					struct vm_area_struct *vma,
					int acctflag)
2302
{
2303
	long ret, chg;
2304
	struct hstate *h = hstate_inode(inode);
2305

2306 2307 2308 2309 2310 2311 2312 2313
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2314 2315 2316 2317 2318 2319
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2320
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2321
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2322 2323 2324 2325 2326
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2327
		chg = to - from;
2328

2329 2330 2331 2332
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2333 2334
	if (chg < 0)
		return chg;
2335

2336
	/* There must be enough filesystem quota for the mapping */
2337 2338
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2339 2340

	/*
2341 2342
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2343
	 */
2344
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2345 2346
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2347
		return ret;
K
Ken Chen 已提交
2348
	}
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2361
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2362
		region_add(&inode->i_mapping->private_list, from, to);
2363 2364 2365 2366 2367
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2368
	struct hstate *h = hstate_inode(inode);
2369
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2370 2371

	spin_lock(&inode->i_lock);
2372
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2373 2374
	spin_unlock(&inode->i_lock);

2375
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2376
	hugetlb_acct_memory(h, -(chg - freed));
2377
}