ptb_dy.py 17.1 KB
Newer Older
H
Hongyu Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
H
Hongyu Liu 已提交
18 19 20 21 22 23 24 25 26
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.base import to_variable
import numpy as np
import six
X
Xing Wu 已提交
27
import multiprocessing
H
Hongyu Liu 已提交
28 29

import reader
30
import model_check
H
Hongyu Liu 已提交
31 32 33 34
import time

from args import *

35 36
#import fluid.clip as clip
#from fluid.clip  import *
H
Hongyu Liu 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")


class SimpleLSTMRNN(fluid.Layer):
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
51
        super(SimpleLSTMRNN, self).__init__()
H
Hongyu Liu 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []

        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
L
Leo Chen 已提交
85 86
        cell_array = []
        hidden_array = []
H
Hongyu Liu 已提交
87 88

        for i in range(self._num_layers):
L
Leo Chen 已提交
89 90
            hidden_array.append(init_hidden[i])
            cell_array.append(init_cell[i])
H
Hongyu Liu 已提交
91 92 93

        res = []
        for index in range(self._num_steps):
L
Leo Chen 已提交
94
            step_input = input_embedding[:,index,:]
H
Hongyu Liu 已提交
95
            for k in range(self._num_layers):
L
Leo Chen 已提交
96 97
                pre_hidden = hidden_array[k]
                pre_cell = cell_array[k]
H
Hongyu Liu 已提交
98 99 100
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

L
Leo Chen 已提交
101
                nn = fluid.layers.concat([step_input, pre_hidden], 1)
H
Hongyu Liu 已提交
102 103 104 105 106 107 108 109
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
L
Leo Chen 已提交
110 111 112
                hidden_array[k] = m
                cell_array[k] = c
                step_input = m
H
Hongyu Liu 已提交
113 114

                if self._dropout is not None and self._dropout > 0.0:
L
Leo Chen 已提交
115 116
                    step_input = fluid.layers.dropout(
                        step_input,
H
Hongyu Liu 已提交
117 118
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
L
Leo Chen 已提交
119 120 121 122
            res.append(step_input)
        real_res = fluid.layers.concat(res, 1)
        real_res = fluid.layers.reshape(real_res, [ -1, self._num_steps, self._hidden_size])
        last_hidden = fluid.layers.concat(hidden_array, 1)
H
Hongyu Liu 已提交
123 124 125
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
L
Leo Chen 已提交
126
        last_cell = fluid.layers.concat(cell_array, 1)
H
Hongyu Liu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
141
        super(PtbModel, self).__init__()
H
Hongyu Liu 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
        self.embedding = Embedding(
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def build_once(self, input, label, init_hidden, init_cell):
        pass

    def forward(self, input, label, init_hidden, init_cell):

        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)

        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.dropout,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)

        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
L
Leo Chen 已提交
200

H
Hongyu Liu 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell

    def debug_emb(self):

        np.save("emb_grad", self.x_emb.gradient())


def train_ptb_lm():
    args = parse_args()
216 217 218

    # check if set use_gpu=True in paddlepaddle cpu version
    model_check.check_cuda(args.use_gpu)
219 220

    place = core.CPUPlace()
X
Xing Wu 已提交
221 222 223 224 225 226 227
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    
228 229 230
    # check if paddlepaddle version is satisfied
    model_check.check_version()

H
Hongyu Liu 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    model_type = args.model_type

    vocab_size = 10000
    if model_type == "test":
        num_layers = 1
        batch_size = 2
        hidden_size = 10
        num_steps = 3
        init_scale = 0.1
        max_grad_norm = 5.0
        epoch_start_decay = 1
        max_epoch = 1
        dropout = 0.0
        lr_decay = 0.5
        base_learning_rate = 1.0
    elif model_type == "small":
        num_layers = 2
        batch_size = 20
        hidden_size = 200
        num_steps = 20
        init_scale = 0.1
        max_grad_norm = 5.0
        epoch_start_decay = 4
        max_epoch = 13
        dropout = 0.0
        lr_decay = 0.5
        base_learning_rate = 1.0
    elif model_type == "medium":
        num_layers = 2
        batch_size = 20
        hidden_size = 650
        num_steps = 35
        init_scale = 0.05
        max_grad_norm = 5.0
        epoch_start_decay = 6
        max_epoch = 39
        dropout = 0.5
        lr_decay = 0.8
        base_learning_rate = 1.0
    elif model_type == "large":
        num_layers = 2
        batch_size = 20
        hidden_size = 1500
        num_steps = 35
        init_scale = 0.04
        max_grad_norm = 10.0
        epoch_start_decay = 14
        max_epoch = 55
        dropout = 0.65
        lr_decay = 1.0 / 1.15
        base_learning_rate = 1.0
    else:
        print("model type not support")
        return

286
    with fluid.dygraph.guard(place):
D
Divano 已提交
287 288 289 290 291 292 293
        if args.ce:
            print("ce mode")
            seed = 33
            np.random.seed(seed)
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            max_epoch = 1
H
Hongyu Liu 已提交
294 295 296 297 298 299 300 301
        ptb_model = PtbModel(
            hidden_size=hidden_size,
            vocab_size=vocab_size,
            num_layers=num_layers,
            num_steps=num_steps,
            init_scale=init_scale,
            dropout=dropout)

302 303 304 305 306 307 308 309 310
        if args.init_from_pretrain_model:
            if not os.path.exists(args.init_from_pretrain_model + '.pdparams'):
                print(args.init_from_pretrain_model)
                raise Warning("The pretrained params do not exist.")
                return
            fluid.load_dygraph(args.init_from_pretrain_model)
            print("finish initing model from pretrained params from %s" %
                  (args.init_from_pretrain_model))

H
Hongyu Liu 已提交
311 312 313 314 315 316 317 318
        dy_param_updated = dict()
        dy_param_init = dict()
        dy_loss = None
        last_hidden = None
        last_cell = None

        data_path = args.data_path
        print("begin to load data")
H
Hongyu Liu 已提交
319
        ptb_data = reader.get_ptb_data(data_path)
H
Hongyu Liu 已提交
320
        print("finished load data")
H
Hongyu Liu 已提交
321
        train_data, valid_data, test_data = ptb_data
H
Hongyu Liu 已提交
322 323 324

        batch_len = len(train_data) // batch_size
        total_batch_size = (batch_len - 1) // num_steps
L
Leo Chen 已提交
325
        log_interval = 200
H
Hongyu Liu 已提交
326 327 328 329 330 331 332 333 334

        bd = []
        lr_arr = [1.0]
        for i in range(1, max_epoch):
            bd.append(total_batch_size * i)
            new_lr = base_learning_rate * (lr_decay**
                                           max(i + 1 - epoch_start_decay, 0.0))
            lr_arr.append(new_lr)

335 336 337 338 339
        grad_clip = fluid.clip.GradientClipByGlobalNorm(max_grad_norm)
        sgd = SGDOptimizer(
            learning_rate=fluid.layers.piecewise_decay(boundaries=bd, values=lr_arr), 
            parameter_list=ptb_model.parameters(), 
            grad_clip=grad_clip)
H
Hongyu Liu 已提交
340 341

        def eval(model, data):
342
            print("begin to eval")
H
Hongyu Liu 已提交
343 344 345 346 347 348 349 350 351 352 353
            total_loss = 0.0
            iters = 0.0
            init_hidden_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')
            init_cell_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')

            model.eval()
            train_data_iter = reader.get_data_iter(data, batch_size, num_steps)
            for batch_id, batch in enumerate(train_data_iter):
                x_data, y_data = batch
354 355
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, num_steps, 1))
H
Hongyu Liu 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)

                out_loss = dy_loss.numpy()

                init_hidden_data = last_hidden.numpy()
                init_cell_data = last_cell.numpy()

                total_loss += out_loss
                iters += num_steps

            print("eval finished")
            ppl = np.exp(total_loss / iters)
            print("ppl ", batch_id, ppl[0])

Z
zhengya01 已提交
375 376
        ce_time = []
        ce_ppl = []
H
hysunflower 已提交
377 378
        
        total_batch_num = 0  #this is for benchmark
H
Hongyu Liu 已提交
379 380 381 382 383 384 385 386 387 388 389
        for epoch_id in range(max_epoch):
            ptb_model.train()
            total_loss = 0.0
            iters = 0.0
            init_hidden_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')
            init_cell_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')

            train_data_iter = reader.get_data_iter(train_data, batch_size,
                                                   num_steps)
L
Leo Chen 已提交
390 391
            init_hidden = to_variable(init_hidden_data)
            init_cell = to_variable(init_cell_data)
H
Hongyu Liu 已提交
392 393
            start_time = time.time()
            for batch_id, batch in enumerate(train_data_iter):
H
hysunflower 已提交
394 395 396
                if args.max_iter and total_batch_num == args.max_iter:
                    return
                batch_start = time.time()
H
Hongyu Liu 已提交
397
                x_data, y_data = batch
L
Leo Chen 已提交
398 399 400 401

                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, num_steps, 1))

H
Hongyu Liu 已提交
402 403
                x = to_variable(x_data)
                y = to_variable(y_data)
L
Leo Chen 已提交
404

H
Hongyu Liu 已提交
405 406
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
S
songyouwei 已提交
407 408
                init_hidden = last_hidden.detach()
                init_cell = last_cell.detach()
H
Hongyu Liu 已提交
409 410 411
                out_loss = dy_loss.numpy()

                dy_loss.backward()
412
                sgd.minimize(dy_loss)
H
Hongyu Liu 已提交
413 414 415

                ptb_model.clear_gradients()
                total_loss += out_loss
H
hysunflower 已提交
416 417
                batch_end = time.time()
                train_batch_cost = batch_end - batch_start
H
Hongyu Liu 已提交
418
                iters += num_steps
H
hysunflower 已提交
419
                total_batch_num = total_batch_num + 1 #this is for benchmark
H
Hongyu Liu 已提交
420 421 422

                if batch_id > 0 and batch_id % log_interval == 0:
                    ppl = np.exp(total_loss / iters)
H
hysunflower 已提交
423
                    print("-- Epoch:[%d]; Batch:[%d]; ppl: %.5f, lr: %.5f, loss: %.5f, batch cost: %.5f" %
424
                          (epoch_id, batch_id, ppl[0],
H
hysunflower 已提交
425
                           sgd._global_learning_rate().numpy(), out_loss, train_batch_cost))
H
Hongyu Liu 已提交
426

427
            print("one epoch finished", epoch_id)
H
Hongyu Liu 已提交
428 429
            print("time cost ", time.time() - start_time)
            ppl = np.exp(total_loss / iters)
Z
zhengya01 已提交
430 431
            ce_time.append(time.time() - start_time)
            ce_ppl.append(ppl[0])
432
            print("-- Epoch:[%d]; ppl: %.5f" % (epoch_id, ppl[0]))
433 434 435 436 437 438 439 440

            if batch_size <= 20 and epoch_id == 0 and ppl[0] > 1000:
                # for bad init, after first epoch, the loss is over 1000
                # no more need to continue
                print("Parameters are randomly initialized and not good this time because the loss is over 1000 after the first epoch.")
                print("Abort this training process and please start again.")
                return 

441 442 443 444
            save_model_dir = os.path.join(args.save_model_dir,
                                          str(epoch_id), 'params')
            fluid.save_dygraph(ptb_model.state_dict(), save_model_dir)
            print("Saved model to: %s.\n" % save_model_dir)
H
Hongyu Liu 已提交
445

Z
zhongpu 已提交
446
            eval(ptb_model, valid_data)
H
Hongyu Liu 已提交
447

Z
zhengya01 已提交
448 449 450 451 452 453 454 455 456 457 458
        if args.ce:
            _ppl = 0
            _time = 0
            try:
                _time = ce_time[-1]
                _ppl = ce_ppl[-1]
            except:
                print("ce info error")
            print("kpis\ttrain_duration_card%s\t%s" % (dev_count, _time))
            print("kpis\ttrain_ppl_card%s\t%f" % (dev_count, _ppl))

Z
zhongpu 已提交
459
        eval(ptb_model, test_data)
H
Hongyu Liu 已提交
460 461

train_ptb_lm()