Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
6c87d487
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6c87d487
编写于
4月 17, 2020
作者:
Z
Zhou Wei
提交者:
GitHub
4月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix grad_clip in dygraph mode, grad_clip strategy has been upgraded since Paddle2.0 (#4541)
上级
53723856
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
17 addition
and
12 deletion
+17
-12
PaddleRec/gru4rec/dy_graph/gru4rec_dy.py
PaddleRec/gru4rec/dy_graph/gru4rec_dy.py
+4
-3
dygraph/ocr_recognition/train.py
dygraph/ocr_recognition/train.py
+4
-2
dygraph/ptb_lm/ptb_dy.py
dygraph/ptb_lm/ptb_dy.py
+6
-4
dygraph/seq2seq/train.py
dygraph/seq2seq/train.py
+3
-3
未找到文件。
PaddleRec/gru4rec/dy_graph/gru4rec_dy.py
浏览文件 @
6c87d487
...
...
@@ -361,10 +361,12 @@ def train_ptb_lm():
max
(
i
+
1
-
epoch_start_decay
,
0.0
))
lr_arr
.
append
(
new_lr
)
grad_clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
max_grad_norm
)
sgd
=
AdagradOptimizer
(
parameter_list
=
ptb_model
.
parameters
(),
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr_arr
))
boundaries
=
bd
,
values
=
lr_arr
),
grad_clip
=
grad_clip
)
print
(
"parameters:--------------------------------"
)
for
para
in
ptb_model
.
parameters
():
...
...
@@ -408,7 +410,6 @@ def train_ptb_lm():
if
args
.
ce
:
print
(
"kpis
\t
test_ppl
\t
%0.3f"
%
ppl
[
0
])
grad_clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
max_grad_norm
)
for
epoch_id
in
range
(
max_epoch
):
ptb_model
.
train
()
total_loss
=
0.0
...
...
@@ -434,7 +435,7 @@ def train_ptb_lm():
init_hidden
=
last_hidden
dy_loss
.
backward
()
sgd
.
minimize
(
dy_loss
,
grad_clip
=
grad_clip
)
sgd
.
minimize
(
dy_loss
)
ptb_model
.
clear_gradients
()
total_loss
+=
out_loss
iters
+=
num_steps
...
...
dygraph/ocr_recognition/train.py
浏览文件 @
6c87d487
...
...
@@ -73,8 +73,10 @@ def train(args):
else
:
learning_rate
=
LR
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
,
parameter_list
=
ocr_attention
.
parameters
())
grad_clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
args
.
gradient_clip
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
,
parameter_list
=
ocr_attention
.
parameters
(),
grad_clip
=
grad_clip
)
train_reader
=
data_reader
.
data_reader
(
args
.
batch_size
,
...
...
@@ -122,7 +124,7 @@ def train(args):
total_loss
+=
avg_loss
.
numpy
()
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
,
grad_clip
=
grad_clip
)
optimizer
.
minimize
(
avg_loss
)
ocr_attention
.
clear_gradients
()
if
batch_id
>
0
and
batch_id
%
args
.
log_period
==
0
:
...
...
dygraph/ptb_lm/ptb_dy.py
浏览文件 @
6c87d487
...
...
@@ -332,8 +332,11 @@ def train_ptb_lm():
max
(
i
+
1
-
epoch_start_decay
,
0.0
))
lr_arr
.
append
(
new_lr
)
sgd
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr_arr
),
parameter_list
=
ptb_model
.
parameters
())
grad_clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
max_grad_norm
)
sgd
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr_arr
),
parameter_list
=
ptb_model
.
parameters
(),
grad_clip
=
grad_clip
)
def
eval
(
model
,
data
):
print
(
"begin to eval"
)
...
...
@@ -371,7 +374,6 @@ def train_ptb_lm():
ce_time
=
[]
ce_ppl
=
[]
grad_clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
max_grad_norm
)
for
epoch_id
in
range
(
max_epoch
):
ptb_model
.
train
()
total_loss
=
0.0
...
...
@@ -402,7 +404,7 @@ def train_ptb_lm():
out_loss
=
dy_loss
.
numpy
()
dy_loss
.
backward
()
sgd
.
minimize
(
dy_loss
,
grad_clip
=
grad_clip
)
sgd
.
minimize
(
dy_loss
)
ptb_model
.
clear_gradients
()
total_loss
+=
out_loss
...
...
dygraph/seq2seq/train.py
浏览文件 @
6c87d487
...
...
@@ -88,9 +88,9 @@ def main():
lr
=
args
.
learning_rate
opt_type
=
args
.
optimizer
if
opt_type
==
"sgd"
:
optimizer
=
fluid
.
optimizer
.
SGD
(
lr
,
parameter_list
=
model
.
parameters
())
optimizer
=
fluid
.
optimizer
.
SGD
(
lr
,
parameter_list
=
model
.
parameters
()
,
grad_clip
=
gloabl_norm_clip
)
elif
opt_type
==
"adam"
:
optimizer
=
fluid
.
optimizer
.
Adam
(
lr
,
parameter_list
=
model
.
parameters
())
optimizer
=
fluid
.
optimizer
.
Adam
(
lr
,
parameter_list
=
model
.
parameters
()
,
grad_clip
=
gloabl_norm_clip
)
else
:
print
(
"only support [sgd|adam]"
)
raise
Exception
(
"opt type not support"
)
...
...
@@ -161,7 +161,7 @@ def main():
loss
=
model
(
input_data_feed
)
# print(loss.numpy()[0])
loss
.
backward
()
optimizer
.
minimize
(
loss
,
grad_clip
=
gloabl_norm_clip
)
optimizer
.
minimize
(
loss
)
model
.
clear_gradients
()
total_loss
+=
loss
*
batch_size
batch_end_time
=
time
.
time
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录