ptb_dy.py 15.7 KB
Newer Older
H
Hongyu Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
H
Hongyu Liu 已提交
18 19 20 21 22 23 24 25 26 27 28
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.base import to_variable
import numpy as np
import six

import reader
29
import model_check
H
Hongyu Liu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
import time

from args import *

#import fluid.dygraph_grad_clip as dygraph_clip
#from fluid.dygraph_grad_clip  import *

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")


class SimpleLSTMRNN(fluid.Layer):
    def __init__(self,
                 name_scope,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
        super(SimpleLSTMRNN, self).__init__(name_scope)
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []

        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
L
Leo Chen 已提交
85 86
        cell_array = []
        hidden_array = []
H
Hongyu Liu 已提交
87 88

        for i in range(self._num_layers):
L
Leo Chen 已提交
89 90
            hidden_array.append(init_hidden[i])
            cell_array.append(init_cell[i])
H
Hongyu Liu 已提交
91 92 93

        res = []
        for index in range(self._num_steps):
L
Leo Chen 已提交
94
            step_input = input_embedding[:,index,:]
H
Hongyu Liu 已提交
95
            for k in range(self._num_layers):
L
Leo Chen 已提交
96 97
                pre_hidden = hidden_array[k]
                pre_cell = cell_array[k]
H
Hongyu Liu 已提交
98 99 100
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

L
Leo Chen 已提交
101
                nn = fluid.layers.concat([step_input, pre_hidden], 1)
H
Hongyu Liu 已提交
102 103 104 105 106 107 108 109
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
L
Leo Chen 已提交
110 111 112
                hidden_array[k] = m
                cell_array[k] = c
                step_input = m
H
Hongyu Liu 已提交
113 114

                if self._dropout is not None and self._dropout > 0.0:
L
Leo Chen 已提交
115 116
                    step_input = fluid.layers.dropout(
                        step_input,
H
Hongyu Liu 已提交
117 118
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
L
Leo Chen 已提交
119 120 121 122
            res.append(step_input)
        real_res = fluid.layers.concat(res, 1)
        real_res = fluid.layers.reshape(real_res, [ -1, self._num_steps, self._hidden_size])
        last_hidden = fluid.layers.concat(hidden_array, 1)
H
Hongyu Liu 已提交
123 124 125
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
L
Leo Chen 已提交
126
        last_cell = fluid.layers.concat(cell_array, 1)
H
Hongyu Liu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
    def __init__(self,
                 name_scope,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
        super(PtbModel, self).__init__(name_scope)
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            self.full_name(),
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
        self.embedding = Embedding(
            self.full_name(),
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def build_once(self, input, label, init_hidden, init_cell):
        pass

    def forward(self, input, label, init_hidden, init_cell):

        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)

        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.dropout,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)

        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
L
Leo Chen 已提交
203

H
Hongyu Liu 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell

    def debug_emb(self):

        np.save("emb_grad", self.x_emb.gradient())


def train_ptb_lm():
    args = parse_args()
219 220 221 222 223 224

    # check if set use_gpu=True in paddlepaddle cpu version
    model_check.check_cuda(args.use_gpu)
    # check if paddlepaddle version is satisfied
    model_check.check_version()

H
Hongyu Liu 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    model_type = args.model_type

    vocab_size = 10000
    if model_type == "test":
        num_layers = 1
        batch_size = 2
        hidden_size = 10
        num_steps = 3
        init_scale = 0.1
        max_grad_norm = 5.0
        epoch_start_decay = 1
        max_epoch = 1
        dropout = 0.0
        lr_decay = 0.5
        base_learning_rate = 1.0
    elif model_type == "small":
        num_layers = 2
        batch_size = 20
        hidden_size = 200
        num_steps = 20
        init_scale = 0.1
        max_grad_norm = 5.0
        epoch_start_decay = 4
        max_epoch = 13
        dropout = 0.0
        lr_decay = 0.5
        base_learning_rate = 1.0
    elif model_type == "medium":
        num_layers = 2
        batch_size = 20
        hidden_size = 650
        num_steps = 35
        init_scale = 0.05
        max_grad_norm = 5.0
        epoch_start_decay = 6
        max_epoch = 39
        dropout = 0.5
        lr_decay = 0.8
        base_learning_rate = 1.0
    elif model_type == "large":
        num_layers = 2
        batch_size = 20
        hidden_size = 1500
        num_steps = 35
        init_scale = 0.04
        max_grad_norm = 10.0
        epoch_start_decay = 14
        max_epoch = 55
        dropout = 0.65
        lr_decay = 1.0 / 1.15
        base_learning_rate = 1.0
    else:
        print("model type not support")
        return

    with fluid.dygraph.guard(core.CUDAPlace(0)):
D
Divano 已提交
281 282 283 284 285 286 287
        if args.ce:
            print("ce mode")
            seed = 33
            np.random.seed(seed)
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            max_epoch = 1
H
Hongyu Liu 已提交
288 289 290 291 292 293 294 295 296
        ptb_model = PtbModel(
            "ptb_model",
            hidden_size=hidden_size,
            vocab_size=vocab_size,
            num_layers=num_layers,
            num_steps=num_steps,
            init_scale=init_scale,
            dropout=dropout)

297 298 299 300 301 302 303 304 305
        if args.init_from_pretrain_model:
            if not os.path.exists(args.init_from_pretrain_model + '.pdparams'):
                print(args.init_from_pretrain_model)
                raise Warning("The pretrained params do not exist.")
                return
            fluid.load_dygraph(args.init_from_pretrain_model)
            print("finish initing model from pretrained params from %s" %
                  (args.init_from_pretrain_model))

H
Hongyu Liu 已提交
306 307 308 309 310 311 312 313
        dy_param_updated = dict()
        dy_param_init = dict()
        dy_loss = None
        last_hidden = None
        last_cell = None

        data_path = args.data_path
        print("begin to load data")
H
Hongyu Liu 已提交
314
        ptb_data = reader.get_ptb_data(data_path)
H
Hongyu Liu 已提交
315
        print("finished load data")
H
Hongyu Liu 已提交
316
        train_data, valid_data, test_data = ptb_data
H
Hongyu Liu 已提交
317 318 319

        batch_len = len(train_data) // batch_size
        total_batch_size = (batch_len - 1) // num_steps
L
Leo Chen 已提交
320
        log_interval = 200
H
Hongyu Liu 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

        bd = []
        lr_arr = [1.0]
        for i in range(1, max_epoch):
            bd.append(total_batch_size * i)
            new_lr = base_learning_rate * (lr_decay**
                                           max(i + 1 - epoch_start_decay, 0.0))
            lr_arr.append(new_lr)

        sgd = SGDOptimizer(learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=lr_arr))

        def eval(model, data):
            print("begion to eval")
            total_loss = 0.0
            iters = 0.0
            init_hidden_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')
            init_cell_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')

            model.eval()
            train_data_iter = reader.get_data_iter(data, batch_size, num_steps)
            for batch_id, batch in enumerate(train_data_iter):
                x_data, y_data = batch
346
                x_data = x_data.reshape((-1, num_steps))
H
Hongyu Liu 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                y_data = y_data.reshape((-1, 1))
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)

                out_loss = dy_loss.numpy()

                init_hidden_data = last_hidden.numpy()
                init_cell_data = last_cell.numpy()

                total_loss += out_loss
                iters += num_steps

            print("eval finished")
            ppl = np.exp(total_loss / iters)
            print("ppl ", batch_id, ppl[0])
D
Divano 已提交
366 367
            if args.ce:
                print("kpis\ttest_ppl\t%0.3f" % ppl[0])
H
Hongyu Liu 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380

        grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(max_grad_norm)
        for epoch_id in range(max_epoch):
            ptb_model.train()
            total_loss = 0.0
            iters = 0.0
            init_hidden_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')
            init_cell_data = np.zeros(
                (num_layers, batch_size, hidden_size), dtype='float32')

            train_data_iter = reader.get_data_iter(train_data, batch_size,
                                                   num_steps)
L
Leo Chen 已提交
381 382
            init_hidden = to_variable(init_hidden_data)
            init_cell = to_variable(init_cell_data)
H
Hongyu Liu 已提交
383 384 385
            start_time = time.time()
            for batch_id, batch in enumerate(train_data_iter):
                x_data, y_data = batch
L
Leo Chen 已提交
386 387 388 389

                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, num_steps, 1))

H
Hongyu Liu 已提交
390 391
                x = to_variable(x_data)
                y = to_variable(y_data)
L
Leo Chen 已提交
392

H
Hongyu Liu 已提交
393 394
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
L
Leo Chen 已提交
395 396
                init_hidden = last_hidden
                init_cell = last_cell
H
Hongyu Liu 已提交
397 398 399 400 401 402 403 404 405 406 407
                out_loss = dy_loss.numpy()

                dy_loss.backward()
                sgd.minimize(dy_loss, grad_clip=grad_clip)

                ptb_model.clear_gradients()
                total_loss += out_loss
                iters += num_steps

                if batch_id > 0 and batch_id % log_interval == 0:
                    ppl = np.exp(total_loss / iters)
L
Leo Chen 已提交
408
                    print("-- Epoch:[%d]; Batch:[%d]; ppl: %.5f, lr: %.5f, loss: %.5f" %
409
                          (epoch_id, batch_id, ppl[0],
L
Leo Chen 已提交
410
                           sgd._global_learning_rate().numpy(), out_loss))
H
Hongyu Liu 已提交
411 412 413 414

            print("one ecpoh finished", epoch_id)
            print("time cost ", time.time() - start_time)
            ppl = np.exp(total_loss / iters)
415
            print("-- Epoch:[%d]; ppl: %.5f" % (epoch_id, ppl[0]))
D
Divano 已提交
416 417
            if args.ce:
                print("kpis\ttrain_ppl\t%0.3f" % ppl[0])
418 419 420 421
            save_model_dir = os.path.join(args.save_model_dir,
                                          str(epoch_id), 'params')
            fluid.save_dygraph(ptb_model.state_dict(), save_model_dir)
            print("Saved model to: %s.\n" % save_model_dir)
H
Hongyu Liu 已提交
422 423 424 425 426

        eval(ptb_model, test_data)


train_ptb_lm()