train_and_evaluate.py 8.9 KB
Newer Older
Y
Yibing Liu 已提交
1
import os
Y
Yibing Liu 已提交
2
import six
Y
Yibing Liu 已提交
3 4 5 6 7 8 9 10 11
import numpy as np
import time
import argparse
import multiprocessing
import paddle
import paddle.fluid as fluid
import utils.reader as reader
from utils.util import print_arguments

Y
Yibing Liu 已提交
12 13 14 15 16
try:
    import cPickle as pickle  #python 2
except ImportError as e:
    import pickle  #python 3

Y
Yibing Liu 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from model import Net


#yapf: disable
def parse_args():
    parser = argparse.ArgumentParser("Training DAM.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=256,
        help='Batch size for training. (default: %(default)d)')
    parser.add_argument(
        '--num_scan_data',
        type=int,
        default=2,
        help='Number of pass for training. (default: %(default)d)')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=1e-3,
        help='Learning rate used to train. (default: %(default)f)')
    parser.add_argument(
        '--data_path',
        type=str,
Y
Yibing Liu 已提交
41
        default="data/data_small.pkl",
Y
Yibing Liu 已提交
42 43 44 45 46 47 48 49 50 51
        help='Path to training data. (default: %(default)s)')
    parser.add_argument(
        '--save_path',
        type=str,
        default="saved_models",
        help='Path to save trained models. (default: %(default)s)')
    parser.add_argument(
        '--use_cuda',
        action='store_true',
        help='If set, use cuda for training.')
Y
Yibing Liu 已提交
52 53 54 55
    parser.add_argument(
        '--ext_eval',
        action='store_true',
        help='If set, use MAP, MRR ect for evaluation.')
Y
Yibing Liu 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    parser.add_argument(
        '--max_turn_num',
        type=int,
        default=9,
        help='Maximum number of utterances in context.')
    parser.add_argument(
        '--max_turn_len',
        type=int,
        default=50,
        help='Maximum length of setences in turns.')
    parser.add_argument(
        '--word_emb_init',
        type=str,
        default=None,
        help='Path to the initial word embedding.')
    parser.add_argument(
        '--vocab_size',
        type=int,
        default=434512,
        help='The size of vocabulary.')
    parser.add_argument(
        '--emb_size',
        type=int,
        default=200,
        help='The dimension of word embedding.')
    parser.add_argument(
        '--_EOS_',
        type=int,
        default=28270,
Y
Yibing Liu 已提交
85
        help='The id for the end of sentence in vocabulary.')
Y
Yibing Liu 已提交
86 87 88 89 90
    parser.add_argument(
        '--stack_num',
        type=int,
        default=5,
        help='The number of stacked attentive modules in network.')
Y
Yibing Liu 已提交
91 92 93 94 95 96 97 98 99 100
    parser.add_argument(
        '--channel1_num',
        type=int,
        default=32,
        help="The channels' number of the 1st conv3d layer's output.")
    parser.add_argument(
        '--channel2_num',
        type=int,
        default=16,
        help="The channels' number of the 2nd conv3d layer's output.")
Y
Yibing Liu 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    args = parser.parse_args()
    return args


#yapf: enable


def train(args):
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
Y
Yibing Liu 已提交
118 119
              args.emb_size, args.stack_num, args.channel1_num,
              args.channel2_num)
Y
Yibing Liu 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    loss, logits = dam.create_network()

    loss.persistable = True
    logits.persistable = True

    train_program = fluid.default_main_program()
    test_program = fluid.default_main_program().clone(for_test=True)

    # gradient clipping
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
        max=1.0, min=-1.0))

    optimizer = fluid.optimizer.Adam(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=args.learning_rate,
            decay_steps=400,
            decay_rate=0.9,
            staircase=True))
    optimizer.minimize(loss)

    fluid.memory_optimize(train_program)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
S
fix bug  
sneaxiy 已提交
147
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
Y
Yibing Liu 已提交
148 149

    print("device count %d" % dev_count)
Y
Yibing Liu 已提交
150 151 152
    print("theoretical memory usage: ")
    print(fluid.contrib.memory_usage(
        program=train_program, batch_size=args.batch_size))
Y
Yibing Liu 已提交
153 154 155 156 157 158 159 160 161 162 163 164

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    train_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, loss_name=loss.name, main_program=train_program)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda,
        main_program=test_program,
        share_vars_from=train_exe)

Y
Yibing Liu 已提交
165 166 167 168 169
    if args.ext_eval:
        import utils.douban_evaluation as eva
    else:
        import utils.evaluation as eva

Y
Yibing Liu 已提交
170 171
    if args.word_emb_init is not None:
        print("start loading word embedding init ...")
Y
Yibing Liu 已提交
172 173 174 175 176 177 178 179
        if six.PY2:
            word_emb = np.array(pickle.load(open(args.word_emb_init,
                                                 'rb'))).astype('float32')
        else:
            word_emb = np.array(
                pickle.load(
                    open(args.word_emb_init, 'rb'), encoding="bytes")).astype(
                        'float32')
Y
Yibing Liu 已提交
180 181
        dam.set_word_embedding(word_emb, place)
        print("finish init word embedding  ...")
Y
Yibing Liu 已提交
182 183

    print("start loading data ...")
Y
Yibing Liu 已提交
184 185 186 187 188
    with open(args.data_path, 'rb') as f:
        if six.PY2:
            train_data, val_data, test_data = pickle.load(f)
        else:
            train_data, val_data, test_data = pickle.load(f, encoding="bytes")
Y
Yibing Liu 已提交
189 190 191 192
    print("finish loading data ...")

    val_batches = reader.build_batches(val_data, data_conf)

Y
Yibing Liu 已提交
193
    batch_num = len(train_data[six.b('y')]) // args.batch_size
Y
Yibing Liu 已提交
194 195
    val_batch_num = len(val_batches["response"])

Y
Yibing Liu 已提交
196 197
    print_step = max(1, batch_num // (dev_count * 100))
    save_step = max(1, batch_num // (dev_count * 10))
Y
Yibing Liu 已提交
198 199 200 201 202

    print("begin model training ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

    step = 0
Y
Yibing Liu 已提交
203
    for epoch in six.moves.xrange(args.num_scan_data):
Y
Yibing Liu 已提交
204 205 206 207
        shuffle_train = reader.unison_shuffle(train_data)
        train_batches = reader.build_batches(shuffle_train, data_conf)

        ave_cost = 0.0
Y
Yibing Liu 已提交
208
        for it in six.moves.xrange(batch_num // dev_count):
Y
Yibing Liu 已提交
209
            feed_list = []
Y
Yibing Liu 已提交
210
            for dev in six.moves.xrange(dev_count):
Y
Yibing Liu 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                index = it * dev_count + dev
                feed_dict = reader.make_one_batch_input(train_batches, index)
                feed_list.append(feed_dict)

            cost = train_exe.run(feed=feed_list, fetch_list=[loss.name])

            ave_cost += np.array(cost[0]).mean()
            step = step + 1
            if step % print_step == 0:
                print("processed: [" + str(step * dev_count * 1.0 / batch_num) +
                      "] ave loss: [" + str(ave_cost / print_step) + "]")
                ave_cost = 0.0

            if (args.save_path is not None) and (step % save_step == 0):
                save_path = os.path.join(args.save_path, "step_" + str(step))
                print("Save model at step %d ... " % step)
Y
Yibing Liu 已提交
227 228
                print(time.strftime('%Y-%m-%d %H:%M:%S',
                                    time.localtime(time.time())))
Y
Yibing Liu 已提交
229 230 231 232
                fluid.io.save_persistables(exe, save_path)

                score_path = os.path.join(args.save_path, 'score.' + str(step))
                score_file = open(score_path, 'w')
Y
Yibing Liu 已提交
233
                for it in six.moves.xrange(val_batch_num // dev_count):
Y
Yibing Liu 已提交
234
                    feed_list = []
Y
Yibing Liu 已提交
235
                    for dev in six.moves.xrange(dev_count):
Y
Yibing Liu 已提交
236 237 238 239 240 241 242 243 244
                        val_index = it * dev_count + dev
                        feed_dict = reader.make_one_batch_input(val_batches,
                                                                val_index)
                        feed_list.append(feed_dict)

                    predicts = test_exe.run(feed=feed_list,
                                            fetch_list=[logits.name])

                    scores = np.array(predicts[0])
Y
Yibing Liu 已提交
245
                    for dev in six.moves.xrange(dev_count):
Y
Yibing Liu 已提交
246
                        val_index = it * dev_count + dev
Y
Yibing Liu 已提交
247
                        for i in six.moves.xrange(args.batch_size):
Y
Yibing Liu 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261
                            score_file.write(
                                str(scores[args.batch_size * dev + i][0]) + '\t'
                                + str(val_batches["label"][val_index][
                                    i]) + '\n')
                score_file.close()

                #write evaluation result
                result = eva.evaluate(score_path)
                result_file_path = os.path.join(args.save_path,
                                                'result.' + str(step))
                with open(result_file_path, 'w') as out_file:
                    for p_at in result:
                        out_file.write(str(p_at) + '\n')
                print('finish evaluation')
Y
Yibing Liu 已提交
262 263
                print(time.strftime('%Y-%m-%d %H:%M:%S',
                                    time.localtime(time.time())))
Y
Yibing Liu 已提交
264 265 266 267 268 269


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    train(args)