train_and_evaluate.py 7.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
import os
import numpy as np
import time
import argparse
import multiprocessing
import paddle
import paddle.fluid as fluid
import utils.reader as reader
import cPickle as pickle
from utils.util import print_arguments
import utils.evaluation as eva

from model import Net


#yapf: disable
def parse_args():
    parser = argparse.ArgumentParser("Training DAM.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=256,
        help='Batch size for training. (default: %(default)d)')
    parser.add_argument(
        '--num_scan_data',
        type=int,
        default=2,
        help='Number of pass for training. (default: %(default)d)')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=1e-3,
        help='Learning rate used to train. (default: %(default)f)')
    parser.add_argument(
        '--data_path',
        type=str,
        default="data/ubuntu/data_small.pkl",
        help='Path to training data. (default: %(default)s)')
    parser.add_argument(
        '--save_path',
        type=str,
        default="saved_models",
        help='Path to save trained models. (default: %(default)s)')
    parser.add_argument(
        '--use_cuda',
        action='store_true',
        help='If set, use cuda for training.')
    parser.add_argument(
        '--max_turn_num',
        type=int,
        default=9,
        help='Maximum number of utterances in context.')
    parser.add_argument(
        '--max_turn_len',
        type=int,
        default=50,
        help='Maximum length of setences in turns.')
    parser.add_argument(
        '--word_emb_init',
        type=str,
        default=None,
        help='Path to the initial word embedding.')
    parser.add_argument(
        '--vocab_size',
        type=int,
        default=434512,
        help='The size of vocabulary.')
    parser.add_argument(
        '--emb_size',
        type=int,
        default=200,
        help='The dimension of word embedding.')
    parser.add_argument(
        '--_EOS_',
        type=int,
        default=28270,
        help='The id for end of sentence in vocabulary.')
    parser.add_argument(
        '--stack_num',
        type=int,
        default=5,
        help='The number of stacked attentive modules in network.')
    args = parser.parse_args()
    return args


#yapf: enable


def train(args):
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
              args.emb_size, args.stack_num)
    loss, logits = dam.create_network()

    loss.persistable = True
    logits.persistable = True

    train_program = fluid.default_main_program()
    test_program = fluid.default_main_program().clone(for_test=True)

    # gradient clipping
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
        max=1.0, min=-1.0))

    optimizer = fluid.optimizer.Adam(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=args.learning_rate,
            decay_steps=400,
            decay_rate=0.9,
            staircase=True))
    optimizer.minimize(loss)

    fluid.memory_optimize(train_program)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = multiprocessing.cpu_count()

    print("device count %d" % dev_count)

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    train_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, loss_name=loss.name, main_program=train_program)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda,
        main_program=test_program,
        share_vars_from=train_exe)

    if args.word_emb_init is not None:
        print("start loading word embedding init ...")
        word_emb = pickle.load(open(args.word_emb_init, 'rb')).astype('float32')
        print("finish loading word embedding init  ...")

    print("start loading data ...")
    train_data, val_data, test_data = pickle.load(open(args.data_path, 'rb'))
    print("finish loading data ...")

    val_batches = reader.build_batches(val_data, data_conf)

    batch_num = len(train_data['y']) / args.batch_size
    val_batch_num = len(val_batches["response"])

    print_step = max(1, batch_num / (dev_count * 100))
    save_step = max(1, batch_num / (dev_count * 10))

    word_emb_inited = False

    print("begin model training ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

    step = 0
    for epoch in xrange(args.num_scan_data):
        shuffle_train = reader.unison_shuffle(train_data)
        train_batches = reader.build_batches(shuffle_train, data_conf)

        ave_cost = 0.0
        for it in xrange(batch_num // dev_count):
            feed_list = []
            for dev in xrange(dev_count):
                index = it * dev_count + dev
                feed_dict = reader.make_one_batch_input(train_batches, index)
                if word_emb_inited is False and args.word_emb_init is not None:
                    feed_dict[dam.word_emb_name] = word_emb
                feed_list.append(feed_dict)

            word_emb_inited = True

            cost = train_exe.run(feed=feed_list, fetch_list=[loss.name])

            ave_cost += np.array(cost[0]).mean()
            step = step + 1
            if step % print_step == 0:
                print("processed: [" + str(step * dev_count * 1.0 / batch_num) +
                      "] ave loss: [" + str(ave_cost / print_step) + "]")
                ave_cost = 0.0

            if (args.save_path is not None) and (step % save_step == 0):
                save_path = os.path.join(args.save_path, "step_" + str(step))
                print("Save model at step %d ... " % step)
                print(time.strftime('%Y-%m-%d %H:%M:%S',
                                    time.localtime(time.time())))
                fluid.io.save_persistables(exe, save_path)

                score_path = os.path.join(args.save_path, 'score.' + str(step))
                score_file = open(score_path, 'w')
                for it in xrange(val_batch_num // dev_count):
                    feed_list = []
                    for dev in xrange(dev_count):
                        val_index = it * dev_count + dev
                        feed_dict = reader.make_one_batch_input(val_batches,
                                                                val_index)
                        feed_list.append(feed_dict)

                    predicts = test_exe.run(feed=feed_list,
                                            fetch_list=[logits.name])

                    scores = np.array(predicts[0])
                    for dev in xrange(dev_count):
                        val_index = it * dev_count + dev
                        for i in xrange(args.batch_size):
                            score_file.write(
                                str(scores[args.batch_size * dev + i][0]) + '\t'
                                + str(val_batches["label"][val_index][
                                    i]) + '\n')
                score_file.close()

                #write evaluation result
                result = eva.evaluate(score_path)
                result_file_path = os.path.join(args.save_path,
                                                'result.' + str(step))
                with open(result_file_path, 'w') as out_file:
                    for p_at in result:
                        out_file.write(str(p_at) + '\n')
                print('finish evaluation')
                print(time.strftime('%Y-%m-%d %H:%M:%S',
                                    time.localtime(time.time())))


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    train(args)