train_and_evaluate.py 8.5 KB
Newer Older
Y
Yibing Liu 已提交
1
import os
Y
Yibing Liu 已提交
2
import six
Y
Yibing Liu 已提交
3 4 5 6 7 8 9 10 11
import numpy as np
import time
import argparse
import multiprocessing
import paddle
import paddle.fluid as fluid
import utils.reader as reader
from utils.util import print_arguments

Y
Yibing Liu 已提交
12 13 14 15 16
try:
    import cPickle as pickle  #python 2
except ImportError as e:
    import pickle  #python 3

Y
Yibing Liu 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from model import Net


#yapf: disable
def parse_args():
    parser = argparse.ArgumentParser("Training DAM.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=256,
        help='Batch size for training. (default: %(default)d)')
    parser.add_argument(
        '--num_scan_data',
        type=int,
        default=2,
        help='Number of pass for training. (default: %(default)d)')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=1e-3,
        help='Learning rate used to train. (default: %(default)f)')
    parser.add_argument(
        '--data_path',
        type=str,
Y
Yibing Liu 已提交
41
        default="data/data_small.pkl",
Y
Yibing Liu 已提交
42 43 44 45 46 47 48 49 50 51
        help='Path to training data. (default: %(default)s)')
    parser.add_argument(
        '--save_path',
        type=str,
        default="saved_models",
        help='Path to save trained models. (default: %(default)s)')
    parser.add_argument(
        '--use_cuda',
        action='store_true',
        help='If set, use cuda for training.')
Y
Yibing Liu 已提交
52 53 54 55
    parser.add_argument(
        '--ext_eval',
        action='store_true',
        help='If set, use MAP, MRR ect for evaluation.')
Y
Yibing Liu 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    parser.add_argument(
        '--max_turn_num',
        type=int,
        default=9,
        help='Maximum number of utterances in context.')
    parser.add_argument(
        '--max_turn_len',
        type=int,
        default=50,
        help='Maximum length of setences in turns.')
    parser.add_argument(
        '--word_emb_init',
        type=str,
        default=None,
        help='Path to the initial word embedding.')
    parser.add_argument(
        '--vocab_size',
        type=int,
        default=434512,
        help='The size of vocabulary.')
    parser.add_argument(
        '--emb_size',
        type=int,
        default=200,
        help='The dimension of word embedding.')
    parser.add_argument(
        '--_EOS_',
        type=int,
        default=28270,
Y
Yibing Liu 已提交
85
        help='The id for the end of sentence in vocabulary.')
Y
Yibing Liu 已提交
86 87 88 89 90
    parser.add_argument(
        '--stack_num',
        type=int,
        default=5,
        help='The number of stacked attentive modules in network.')
Y
Yibing Liu 已提交
91 92 93 94 95 96 97 98 99 100
    parser.add_argument(
        '--channel1_num',
        type=int,
        default=32,
        help="The channels' number of the 1st conv3d layer's output.")
    parser.add_argument(
        '--channel2_num',
        type=int,
        default=16,
        help="The channels' number of the 2nd conv3d layer's output.")
Y
Yibing Liu 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    args = parser.parse_args()
    return args


#yapf: enable


def train(args):
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
Y
Yibing Liu 已提交
118 119
              args.emb_size, args.stack_num, args.channel1_num,
              args.channel2_num)
Y
Yibing Liu 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    loss, logits = dam.create_network()

    loss.persistable = True
    logits.persistable = True

    train_program = fluid.default_main_program()
    test_program = fluid.default_main_program().clone(for_test=True)

    # gradient clipping
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
        max=1.0, min=-1.0))

    optimizer = fluid.optimizer.Adam(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=args.learning_rate,
            decay_steps=400,
            decay_rate=0.9,
            staircase=True))
    optimizer.minimize(loss)

    fluid.memory_optimize(train_program)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
S
fix bug  
sneaxiy 已提交
147
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
Y
Yibing Liu 已提交
148 149

    print("device count %d" % dev_count)
Y
Yibing Liu 已提交
150 151 152
    print("theoretical memory usage: ")
    print(fluid.contrib.memory_usage(
        program=train_program, batch_size=args.batch_size))
Y
Yibing Liu 已提交
153 154 155 156 157 158 159 160 161 162 163 164

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    train_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, loss_name=loss.name, main_program=train_program)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda,
        main_program=test_program,
        share_vars_from=train_exe)

Y
Yibing Liu 已提交
165 166 167 168 169
    if args.ext_eval:
        import utils.douban_evaluation as eva
    else:
        import utils.evaluation as eva

Y
Yibing Liu 已提交
170 171
    if args.word_emb_init is not None:
        print("start loading word embedding init ...")
Y
Yibing Liu 已提交
172 173
        word_emb = np.array(pickle.load(open(args.word_emb_init, 'rb'))).astype(
            'float32')
Y
Yibing Liu 已提交
174 175
        dam.set_word_embedding(word_emb, place)
        print("finish init word embedding  ...")
Y
Yibing Liu 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    print("start loading data ...")
    train_data, val_data, test_data = pickle.load(open(args.data_path, 'rb'))
    print("finish loading data ...")

    val_batches = reader.build_batches(val_data, data_conf)

    batch_num = len(train_data['y']) / args.batch_size
    val_batch_num = len(val_batches["response"])

    print_step = max(1, batch_num / (dev_count * 100))
    save_step = max(1, batch_num / (dev_count * 10))

    print("begin model training ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

    step = 0
Y
Yibing Liu 已提交
193
    for epoch in six.moves.xrange(args.num_scan_data):
Y
Yibing Liu 已提交
194 195 196 197
        shuffle_train = reader.unison_shuffle(train_data)
        train_batches = reader.build_batches(shuffle_train, data_conf)

        ave_cost = 0.0
Y
Yibing Liu 已提交
198
        for it in six.moves.xrange(batch_num // dev_count):
Y
Yibing Liu 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
            feed_list = []
            for dev in xrange(dev_count):
                index = it * dev_count + dev
                feed_dict = reader.make_one_batch_input(train_batches, index)
                feed_list.append(feed_dict)

            cost = train_exe.run(feed=feed_list, fetch_list=[loss.name])

            ave_cost += np.array(cost[0]).mean()
            step = step + 1
            if step % print_step == 0:
                print("processed: [" + str(step * dev_count * 1.0 / batch_num) +
                      "] ave loss: [" + str(ave_cost / print_step) + "]")
                ave_cost = 0.0

            if (args.save_path is not None) and (step % save_step == 0):
                save_path = os.path.join(args.save_path, "step_" + str(step))
                print("Save model at step %d ... " % step)
Y
Yibing Liu 已提交
217 218 219
                print(
                    time.strftime('%Y-%m-%d %H:%M:%S',
                                  time.localtime(time.time())))
Y
Yibing Liu 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
                fluid.io.save_persistables(exe, save_path)

                score_path = os.path.join(args.save_path, 'score.' + str(step))
                score_file = open(score_path, 'w')
                for it in xrange(val_batch_num // dev_count):
                    feed_list = []
                    for dev in xrange(dev_count):
                        val_index = it * dev_count + dev
                        feed_dict = reader.make_one_batch_input(val_batches,
                                                                val_index)
                        feed_list.append(feed_dict)

                    predicts = test_exe.run(feed=feed_list,
                                            fetch_list=[logits.name])

                    scores = np.array(predicts[0])
                    for dev in xrange(dev_count):
                        val_index = it * dev_count + dev
                        for i in xrange(args.batch_size):
                            score_file.write(
                                str(scores[args.batch_size * dev + i][0]) + '\t'
                                + str(val_batches["label"][val_index][
                                    i]) + '\n')
                score_file.close()

                #write evaluation result
                result = eva.evaluate(score_path)
                result_file_path = os.path.join(args.save_path,
                                                'result.' + str(step))
                with open(result_file_path, 'w') as out_file:
                    for p_at in result:
                        out_file.write(str(p_at) + '\n')
                print('finish evaluation')
Y
Yibing Liu 已提交
253 254 255
                print(
                    time.strftime('%Y-%m-%d %H:%M:%S',
                                  time.localtime(time.time())))
Y
Yibing Liu 已提交
256 257 258 259 260 261


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    train(args)