README.md 2.5 KB
Newer Older
1 2
# Deep Speech 2 on PaddlePaddle

3
## Installation
4

5
Please replace `$PADDLE_INSTALL_DIR` with your own paddle installation directory.
6 7

```
Y
yangyaming 已提交
8
sh setup.sh
9 10 11 12 13
export LD_LIBRARY_PATH=$PADDLE_INSTALL_DIR/Paddle/third_party/install/warpctc/lib:$LD_LIBRARY_PATH
```

For some machines, we also need to install libsndfile1. Details to be added.

14 15 16
## Usage

### Preparing Data
17

18
```
X
Xinghai Sun 已提交
19 20
cd datasets
sh run_all.sh
21
cd ..
22
```
23

X
Xinghai Sun 已提交
24
`sh run_all.sh` prepares all ASR datasets (currently, only LibriSpeech available). After running, we have several summarization manifest files in json-format.
25

X
Xinghai Sun 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
A manifest file summarizes a speech data set, with each line containing the meta data (i.e. audio filepath, transcript text, audio duration) of each audio file within the data set, in json format. Manifest file serves as an interface informing our system of  where and what to read the speech samples.


More help for arguments:

```
python datasets/librispeech/librispeech.py --help
```

### Preparing for Training

```
python compute_mean_std.py
```

`python compute_mean_std.py` computes mean and stdandard deviation for audio features, and save them to a file with a default name `./mean_std.npz`. This file will be used in both training and inferencing.
42

43 44 45
More help for arguments:

```
X
Xinghai Sun 已提交
46
python compute_mean_std.py --help
47 48
```

X
Xinghai Sun 已提交
49
### Training
50 51 52 53

For GPU Training:

```
54
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py
55 56 57 58 59
```

For CPU Training:

```
60
python train.py --use_gpu False
61 62 63 64 65 66 67 68
```

More help for arguments:

```
python train.py --help
```

Y
Yibing Liu 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82
### Preparing language model

The following steps, inference, parameters tuning and evaluating, will require a language model during decoding.
A compressed language model is provided and can be accessed by

```
cd ./lm
sh run.sh
cd ..
```

### Inference

For GPU inference
83 84

```
X
Xinghai Sun 已提交
85
CUDA_VISIBLE_DEVICES=0 python infer.py
86 87
```

Y
Yibing Liu 已提交
88 89 90 91 92 93
For CPU inference

```
python infer.py --use_gpu=False
```

94 95 96 97 98
More help for arguments:

```
python infer.py --help
```
Y
Yibing Liu 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

### Evaluating

```
CUDA_VISIBLE_DEVICES=0 python evaluate.py
```

More help for arguments:

```
python evaluate.py --help
```

### Parameters tuning

Y
Yibing Liu 已提交
114 115 116
Usually, the parameters $\alpha$ and $\beta$ for the CTC [prefix beam search](https://arxiv.org/abs/1408.2873) decoder need to be tuned after retraining the acoustic model.

For GPU tuning
Y
Yibing Liu 已提交
117 118 119 120 121

```
CUDA_VISIBLE_DEVICES=0 python tune.py
```

Y
Yibing Liu 已提交
122 123 124 125 126 127
For CPU tuning

```
python tune.py --use_gpu=False
```

Y
Yibing Liu 已提交
128 129 130 131 132
More help for arguments:

```
python tune.py --help
```
Y
Yibing Liu 已提交
133 134

Then reset parameters with the tuning result before inference or evaluating.