Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
1043ea51
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1043ea51
编写于
6月 03, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor decoder interfaces and add ./data directory.
上级
ec9cce9e
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
130 addition
and
63 deletion
+130
-63
deep_speech_2/README.md
deep_speech_2/README.md
+2
-0
deep_speech_2/data/eng_vocab.txt
deep_speech_2/data/eng_vocab.txt
+0
-0
deep_speech_2/data/librispeech.py
deep_speech_2/data/librispeech.py
+0
-0
deep_speech_2/decoder.py
deep_speech_2/decoder.py
+60
-0
deep_speech_2/infer.py
deep_speech_2/infer.py
+31
-38
deep_speech_2/model.py
deep_speech_2/model.py
+21
-13
deep_speech_2/train.py
deep_speech_2/train.py
+16
-12
未找到文件。
deep_speech_2/README.md
浏览文件 @
1043ea51
...
...
@@ -16,7 +16,9 @@ For some machines, we also need to install libsndfile1. Details to be added.
### Preparing Dataset(s)
```
cd data
python librispeech.py
cd ..
```
More help for arguments:
...
...
deep_speech_2/eng_vocab.txt
→
deep_speech_2/
data/
eng_vocab.txt
浏览文件 @
1043ea51
文件已移动
deep_speech_2/librispeech.py
→
deep_speech_2/
data/
librispeech.py
浏览文件 @
1043ea51
文件已移动
deep_speech_2/decoder.py
0 → 100755
浏览文件 @
1043ea51
"""
CTC-like decoder utilitis.
"""
from
itertools
import
groupby
import
numpy
as
np
def
ctc_best_path_decode
(
probs_seq
,
vocabulary
):
"""
Best path decoding, also called argmax decoding or greedy decoding.
Path consisting of the most probable tokens are further post-processed to
remove consecutive repetitions and all blanks.
:param probs_seq: 2-D list of probabilities over the vocabulary for each
character. Each element is a list of float probabilities
for one character.
:type probs_seq: list
:param vocabulary: Vocabulary list.
:type vocabulary: list
:return: Decoding result string.
:rtype: baseline
"""
# dimension verification
for
probs
in
probs_seq
:
if
not
len
(
probs
)
==
len
(
vocabulary
)
+
1
:
raise
ValueError
(
"probs_seq dimension mismatchedd with vocabulary"
)
# argmax to get the best index for each time step
max_index_list
=
list
(
np
.
array
(
probs_seq
).
argmax
(
axis
=
1
))
# remove consecutive duplicate indexes
index_list
=
[
index_group
[
0
]
for
index_group
in
groupby
(
max_index_list
)]
# remove blank indexes
blank_index
=
len
(
vocabulary
)
index_list
=
[
index
for
index
in
index_list
if
index
!=
blank_index
]
# convert index list to string
return
''
.
join
([
vocabulary
[
index
]
for
index
in
index_list
])
def
ctc_decode
(
probs_seq
,
vocabulary
,
method
):
"""
CTC-like sequence decoding from a sequence of likelihood probablilites.
:param probs_seq: 2-D list of probabilities over the vocabulary for each
character. Each element is a list of float probabilities
for one character.
:type probs_seq: list
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param method: Decoding method name, with options: "best_path".
:type method: basestring
:return: Decoding result string.
:rtype: baseline
"""
for
prob_list
in
probs_seq
:
if
not
len
(
prob_list
)
==
len
(
vocabulary
)
+
1
:
raise
ValueError
(
"probs dimension mismatchedd with vocabulary"
)
if
method
==
"best_path"
:
return
ctc_best_path_decode
(
probs_seq
,
vocabulary
)
else
:
raise
ValueError
(
"Decoding method [%s] is not supported."
)
deep_speech_2/infer.py
浏览文件 @
1043ea51
...
...
@@ -3,12 +3,12 @@
"""
import
paddle.v2
as
paddle
from
itertools
import
groupby
import
distutils.util
import
argparse
import
gzip
from
audio_data_utils
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
ctc_decode
parser
=
argparse
.
ArgumentParser
(
description
=
'Simplified version of DeepSpeech2 inference.'
)
...
...
@@ -39,12 +39,12 @@ parser.add_argument(
help
=
"Use gpu or not. (default: %(default)s)"
)
parser
.
add_argument
(
"--normalizer_manifest_path"
,
default
=
'
.
/manifest.libri.train-clean-100'
,
default
=
'
data
/manifest.libri.train-clean-100'
,
type
=
str
,
help
=
"Manifest path for normalizer. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_manifest_path"
,
default
=
'
.
/manifest.libri.test-clean'
,
default
=
'
data
/manifest.libri.test-clean'
,
type
=
str
,
help
=
"Manifest path for decoding. (default: %(default)s)"
)
parser
.
add_argument
(
...
...
@@ -52,34 +52,28 @@ parser.add_argument(
default
=
'./params.tar.gz'
,
type
=
str
,
help
=
"Model filepath. (default: %(default)s)"
)
parser
.
add_argument
(
"--vocab_filepath"
,
default
=
'data/eng_vocab.txt'
,
type
=
str
,
help
=
"Vocabulary filepath. (default: %(default)s)"
)
args
=
parser
.
parse_args
()
def
remove_duplicate_and_blank
(
id_list
,
blank_id
):
"""
Postprocessing for max-ctc-decoder.
- remove consecutive duplicate tokens.
- remove blanks.
"""
# remove consecutive duplicate tokens
id_list
=
[
x
[
0
]
for
x
in
groupby
(
id_list
)]
# remove blanks
return
[
id
for
id
in
id_list
if
id
!=
blank_id
]
def
best_path_decode
():
def
infer
():
"""
Max-ctc-decoding for DeepSpeech2.
"""
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
'eng_vocab.txt'
,
vocab_filepath
=
args
.
vocab_filepath
,
normalizer_manifest_path
=
args
.
normalizer_manifest_path
,
normalizer_num_samples
=
200
,
max_duration
=
20.0
,
min_duration
=
0.0
,
stride_ms
=
10
,
window_ms
=
20
)
# create network config
dict_size
=
data_generator
.
vocabulary_size
()
vocab_list
=
data_generator
.
vocabulary_list
()
...
...
@@ -91,13 +85,14 @@ def best_path_decode():
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
dict_size
))
_
,
max_id
=
deep_speech2
(
output_probs
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
dict_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
)
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
True
)
# load parameters
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
...
...
@@ -114,30 +109,28 @@ def best_path_decode():
shuffle
=
False
)
infer_data
=
test_batch_reader
().
next
()
# run max-ctc-decoding
max_id_results
=
paddle
.
infer
(
output_layer
=
max_id
,
parameters
=
parameters
,
input
=
infer_data
,
field
=
[
'id'
])
# postprocess
instance_length
=
len
(
max_id_results
)
/
args
.
num_samples
instance_list
=
[
max_id_results
[
i
*
instance_length
:(
i
+
1
)
*
instance_length
]
for
i
in
xrange
(
0
,
args
.
num_samples
)
# run inference
infer_results
=
paddle
.
infer
(
output_layer
=
output_probs
,
parameters
=
parameters
,
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
/
len
(
infer_data
)
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
for
i
in
xrange
(
0
,
len
(
infer_data
))
]
for
i
,
instance
in
enumerate
(
instance_list
):
id_list
=
remove_duplicate_and_blank
(
instance
,
dict_size
)
output_transcript
=
''
.
join
([
vocab_list
[
id
]
for
id
in
id_list
])
target_transcript
=
''
.
join
([
vocab_list
[
id
]
for
id
in
infer_data
[
i
][
1
]])
print
(
"Target Transcript: %s
\n
Output Transcript: %s
\n
"
%
(
target_transcript
,
output_transcript
))
# decode and print
for
i
,
probs
in
enumerate
(
probs_split
):
output_transcription
=
ctc_decode
(
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
method
=
"best_path"
)
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
print
(
"Target Transcription: %s
\n
Output Transcription: %s
\n
"
%
(
target_transcription
,
output_transcription
))
def
main
():
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
1
)
best_path_decode
()
infer
()
if
__name__
==
'__main__'
:
...
...
deep_speech_2/model.py
浏览文件 @
1043ea51
...
...
@@ -85,7 +85,8 @@ def deep_speech2(audio_data,
dict_size
,
num_conv_layers
=
2
,
num_rnn_layers
=
3
,
rnn_size
=
256
):
rnn_size
=
256
,
is_inference
=
False
):
"""
The whole DeepSpeech2 model structure (a simplified version).
...
...
@@ -101,7 +102,12 @@ def deep_speech2(audio_data,
:type num_rnn_layers: int
:param rnn_size: RNN layer size (number of RNN cells).
:type rnn_size: int
:return: Tuple of the cost layer and the max_id decoder layer.
:param is_inference: False in the training mode, and True in the
inferene mode.
:type is_inference: bool
:return: If is_inference set False, return a ctc cost layer;
if is_inference set True, return a sequence layer of output
probability distribution.
:rtype: tuple of LayerOutput
"""
# convolution group
...
...
@@ -118,19 +124,21 @@ def deep_speech2(audio_data,
# rnn group
rnn_group_output
=
rnn_group
(
input
=
conv2seq
,
size
=
rnn_size
,
num_stacks
=
num_rnn_layers
)
# output token distribution
fc
=
paddle
.
layer
.
fc
(
input
=
rnn_group_output
,
size
=
dict_size
+
1
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
True
)
# ctc cost
cost
=
paddle
.
layer
.
warp_ctc
(
input
=
fc
,
label
=
text_data
,
size
=
dict_size
+
1
,
blank
=
dict_size
,
norm_by_times
=
True
)
# max decoder
max_id
=
paddle
.
layer
.
max_id
(
input
=
fc
)
return
cost
,
max_id
if
is_inference
:
# probability distribution with softmax
return
paddle
.
layer
.
mixed
(
input
=
paddle
.
layer
.
identity_projection
(
input
=
fc
),
act
=
paddle
.
activation
.
Softmax
())
else
:
# ctc cost
return
paddle
.
layer
.
warp_ctc
(
input
=
fc
,
label
=
text_data
,
size
=
dict_size
+
1
,
blank
=
dict_size
,
norm_by_times
=
True
)
deep_speech_2/train.py
浏览文件 @
1043ea51
...
...
@@ -60,19 +60,24 @@ parser.add_argument(
help
=
"Trainer number. (default: %(default)s)"
)
parser
.
add_argument
(
"--normalizer_manifest_path"
,
default
=
'
.
/manifest.libri.train-clean-100'
,
default
=
'
data
/manifest.libri.train-clean-100'
,
type
=
str
,
help
=
"Manifest path for normalizer. (default: %(default)s)"
)
parser
.
add_argument
(
"--train_manifest_path"
,
default
=
'
.
/manifest.libri.train-clean-100'
,
default
=
'
data
/manifest.libri.train-clean-100'
,
type
=
str
,
help
=
"Manifest path for training. (default: %(default)s)"
)
parser
.
add_argument
(
"--dev_manifest_path"
,
default
=
'
.
/manifest.libri.dev-clean'
,
default
=
'
data
/manifest.libri.dev-clean'
,
type
=
str
,
help
=
"Manifest path for validation. (default: %(default)s)"
)
parser
.
add_argument
(
"--vocab_filepath"
,
default
=
'data/eng_vocab.txt'
,
type
=
str
,
help
=
"Vocabulary filepath. (default: %(default)s)"
)
args
=
parser
.
parse_args
()
...
...
@@ -82,7 +87,7 @@ def train():
"""
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
'eng_vocab.txt'
,
vocab_filepath
=
args
.
vocab_filepath
,
normalizer_manifest_path
=
args
.
normalizer_manifest_path
,
normalizer_num_samples
=
200
,
max_duration
=
20.0
,
...
...
@@ -100,13 +105,14 @@ def train():
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
dict_size
))
cost
,
_
=
deep_speech2
(
cost
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
dict_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
)
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
False
)
# create parameters and optimizer
parameters
=
paddle
.
parameters
.
create
(
cost
)
...
...
@@ -118,21 +124,21 @@ def train():
# prepare data reader
train_batch_reader_sortagrad
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
train_manifest_path
,
batch_size
=
args
.
batch_size
//
args
.
trainer_count
,
batch_size
=
args
.
batch_size
,
padding_to
=
2000
,
flatten
=
True
,
sort_by_duration
=
True
,
shuffle
=
False
)
train_batch_reader_nosortagrad
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
train_manifest_path
,
batch_size
=
args
.
batch_size
//
args
.
trainer_count
,
batch_size
=
args
.
batch_size
,
padding_to
=
2000
,
flatten
=
True
,
sort_by_duration
=
False
,
shuffle
=
True
)
test_batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
dev_manifest_path
,
batch_size
=
args
.
batch_size
//
args
.
trainer_count
,
batch_size
=
args
.
batch_size
,
padding_to
=
2000
,
flatten
=
True
,
sort_by_duration
=
False
,
...
...
@@ -141,9 +147,7 @@ def train():
# create event handler
def
event_handler
(
event
):
global
start_time
global
cost_sum
global
cost_counter
global
start_time
,
cost_sum
,
cost_counter
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
cost_sum
+=
event
.
cost
cost_counter
+=
1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录