models.py 10.1 KB
Newer Older
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
Dun 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
import paddle
import paddle.fluid as fluid

import contextlib
name_scope = ""

decode_channel = 48
encode_channel = 256
label_number = 19

bn_momentum = 0.99
dropout_keep_prop = 0.9
is_train = True

op_results = {}

default_epsilon = 1e-3
default_norm_type = 'bn'
default_group_number = 32
D
Dun 已提交
23 24 25 26 27
depthwise_use_cudnn = False

bn_regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)
depthwise_regularizer = fluid.regularizer.L2DecayRegularizer(
    regularization_coeff=0.0)
D
Dun 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


@contextlib.contextmanager
def scope(name):
    global name_scope
    bk = name_scope
    name_scope = name_scope + name + '/'
    yield
    name_scope = bk


def check(data, number):
    if type(data) == int:
        return [data] * number
    assert len(data) == number
    return data


def clean():
    global op_results
    op_results = {}


def append_op_result(result, name):
    global op_results
    op_index = len(op_results)
    name = name_scope + name + str(op_index)
    op_results[name] = result
    return result


def conv(*args, **kargs):
D
Dun 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    if "xception" in name_scope:
        init_std = 0.09
    elif "logit" in name_scope:
        init_std = 0.01
    elif name_scope.endswith('depthwise/'):
        init_std = 0.33
    else:
        init_std = 0.06
    if name_scope.endswith('depthwise/'):
        regularizer = depthwise_regularizer
    else:
        regularizer = None

    kargs['param_attr'] = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=regularizer,
        initializer=fluid.initializer.TruncatedNormal(
            loc=0.0, scale=init_std))
78
    if 'bias_attr' in kargs and kargs['bias_attr']:
D
Dun 已提交
79 80 81 82
        kargs['bias_attr'] = fluid.ParamAttr(
            name=name_scope + 'biases',
            regularizer=regularizer,
            initializer=fluid.initializer.ConstantInitializer(value=0.0))
D
Dun 已提交
83 84
    else:
        kargs['bias_attr'] = False
D
Dun 已提交
85
    kargs['name'] = name_scope + 'conv'
D
Dun 已提交
86 87 88 89 90 91
    return append_op_result(fluid.layers.conv2d(*args, **kargs), 'conv')


def group_norm(input, G, eps=1e-5, param_attr=None, bias_attr=None):
    N, C, H, W = input.shape
    if C % G != 0:
D
Dun 已提交
92
        # print "group can not divide channle:", C, G
D
Dun 已提交
93 94 95 96 97 98 99
        for d in range(10):
            for t in [d, -d]:
                if G + t <= 0: continue
                if C % (G + t) == 0:
                    G = G + t
                    break
            if C % G == 0:
D
Dun 已提交
100
                # print "use group size:", G
D
Dun 已提交
101 102
                break
    assert C % G == 0
D
Dun 已提交
103 104 105 106 107 108 109
    x = fluid.layers.group_norm(
        input,
        groups=G,
        param_attr=param_attr,
        bias_attr=bias_attr,
        name=name_scope + 'group_norm')
    return x
D
Dun 已提交
110 111 112 113 114 115 116 117 118 119


def bn(*args, **kargs):
    if default_norm_type == 'bn':
        with scope('BatchNorm'):
            return append_op_result(
                fluid.layers.batch_norm(
                    *args,
                    epsilon=default_epsilon,
                    momentum=bn_momentum,
D
Dun 已提交
120 121 122 123
                    param_attr=fluid.ParamAttr(
                        name=name_scope + 'gamma', regularizer=bn_regularizer),
                    bias_attr=fluid.ParamAttr(
                        name=name_scope + 'beta', regularizer=bn_regularizer),
D
Dun 已提交
124 125 126 127 128 129 130 131 132 133 134
                    moving_mean_name=name_scope + 'moving_mean',
                    moving_variance_name=name_scope + 'moving_variance',
                    **kargs),
                'bn')
    elif default_norm_type == 'gn':
        with scope('GroupNorm'):
            return append_op_result(
                group_norm(
                    args[0],
                    default_group_number,
                    eps=default_epsilon,
D
Dun 已提交
135 136 137 138
                    param_attr=fluid.ParamAttr(
                        name=name_scope + 'gamma', regularizer=bn_regularizer),
                    bias_attr=fluid.ParamAttr(
                        name=name_scope + 'beta', regularizer=bn_regularizer)),
D
Dun 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                'gn')
    else:
        raise "Unsupport norm type:" + default_norm_type


def bn_relu(data):
    return append_op_result(fluid.layers.relu(bn(data)), 'relu')


def relu(data):
    return append_op_result(fluid.layers.relu(data), 'relu')


def seq_conv(input, channel, stride, filter, dilation=1, act=None):
    with scope('depthwise'):
        input = conv(
            input,
            input.shape[1],
            filter,
            stride,
            groups=input.shape[1],
160
            padding=(filter // 2) * dilation,
D
Dun 已提交
161 162
            dilation=dilation,
            use_cudnn=depthwise_use_cudnn)
D
Dun 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        input = bn(input)
        if act: input = act(input)
    with scope('pointwise'):
        input = conv(input, channel, 1, 1, groups=1, padding=0)
        input = bn(input)
        if act: input = act(input)
    return input


def xception_block(input,
                   channels,
                   strides=1,
                   filters=3,
                   dilation=1,
                   skip_conv=True,
                   has_skip=True,
                   activation_fn_in_separable_conv=False):
    repeat_number = 3
    channels = check(channels, repeat_number)
    filters = check(filters, repeat_number)
    strides = check(strides, repeat_number)
    data = input
D
Dun 已提交
185
    results = []
D
Dun 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    for i in range(repeat_number):
        with scope('separable_conv' + str(i + 1)):
            if not activation_fn_in_separable_conv:
                data = relu(data)
                data = seq_conv(
                    data,
                    channels[i],
                    strides[i],
                    filters[i],
                    dilation=dilation)
            else:
                data = seq_conv(
                    data,
                    channels[i],
                    strides[i],
                    filters[i],
                    dilation=dilation,
                    act=relu)
D
Dun 已提交
204
            results.append(data)
D
Dun 已提交
205
    if not has_skip:
D
Dun 已提交
206
        return append_op_result(data, 'xception_block'), results
D
Dun 已提交
207 208 209 210 211 212 213
    if skip_conv:
        with scope('shortcut'):
            skip = bn(
                conv(
                    input, channels[-1], 1, strides[-1], groups=1, padding=0))
    else:
        skip = input
D
Dun 已提交
214
    return append_op_result(data + skip, 'xception_block'), results
D
Dun 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227


def entry_flow(data):
    with scope("entry_flow"):
        with scope("conv1"):
            data = conv(data, 32, 3, stride=2, padding=1)
            data = bn_relu(data)
        with scope("conv2"):
            data = conv(data, 64, 3, stride=1, padding=1)
            data = bn_relu(data)
        with scope("block1"):
            data, _ = xception_block(data, 128, [1, 1, 2])
        with scope("block2"):
D
Dun 已提交
228
            data, results = xception_block(data, 256, [1, 1, 2])
D
Dun 已提交
229 230
        with scope("block3"):
            data, _ = xception_block(data, 728, [1, 1, 2])
D
Dun 已提交
231
        return data, results[1]
D
Dun 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329


def middle_flow(data):
    with scope("middle_flow"):
        for i in range(16):
            with scope("block" + str(i + 1)):
                data, _ = xception_block(data, 728, [1, 1, 1], skip_conv=False)
    return data


def exit_flow(data):
    with scope("exit_flow"):
        with scope('block1'):
            data, _ = xception_block(data, [728, 1024, 1024], [1, 1, 1])
        with scope('block2'):
            data, _ = xception_block(
                data, [1536, 1536, 2048], [1, 1, 1],
                dilation=2,
                has_skip=False,
                activation_fn_in_separable_conv=True)
        return data


def dropout(x, keep_rate):
    if is_train:
        return fluid.layers.dropout(x, 1 - keep_rate) / keep_rate
    else:
        return x


def encoder(input):
    with scope('encoder'):
        channel = 256
        with scope("image_pool"):
            image_avg = fluid.layers.reduce_mean(input, [2, 3], keep_dim=True)
            append_op_result(image_avg, 'reduce_mean')
            image_avg = bn_relu(
                conv(
                    image_avg, channel, 1, 1, groups=1, padding=0))
            image_avg = fluid.layers.resize_bilinear(image_avg, input.shape[2:])

        with scope("aspp0"):
            aspp0 = bn_relu(conv(input, channel, 1, 1, groups=1, padding=0))
        with scope("aspp1"):
            aspp1 = seq_conv(input, channel, 1, 3, dilation=6, act=relu)
        with scope("aspp2"):
            aspp2 = seq_conv(input, channel, 1, 3, dilation=12, act=relu)
        with scope("aspp3"):
            aspp3 = seq_conv(input, channel, 1, 3, dilation=18, act=relu)
        with scope("concat"):
            data = append_op_result(
                fluid.layers.concat(
                    [image_avg, aspp0, aspp1, aspp2, aspp3], axis=1),
                'concat')
            data = bn_relu(conv(data, channel, 1, 1, groups=1, padding=0))
            data = dropout(data, dropout_keep_prop)
        return data


def decoder(encode_data, decode_shortcut):
    with scope('decoder'):
        with scope('concat'):
            decode_shortcut = bn_relu(
                conv(
                    decode_shortcut, decode_channel, 1, 1, groups=1, padding=0))
            encode_data = fluid.layers.resize_bilinear(
                encode_data, decode_shortcut.shape[2:])
            encode_data = fluid.layers.concat(
                [encode_data, decode_shortcut], axis=1)
            append_op_result(encode_data, 'concat')
        with scope("separable_conv1"):
            encode_data = seq_conv(
                encode_data, encode_channel, 1, 3, dilation=1, act=relu)
        with scope("separable_conv2"):
            encode_data = seq_conv(
                encode_data, encode_channel, 1, 3, dilation=1, act=relu)
        return encode_data


def deeplabv3p(img):
    global default_epsilon
    append_op_result(img, 'img')
    with scope('xception_65'):
        default_epsilon = 1e-3
        # Entry flow
        data, decode_shortcut = entry_flow(img)
        # Middle flow
        data = middle_flow(data)
        # Exit flow
        data = exit_flow(data)
    default_epsilon = 1e-5
    encode_data = encoder(data)
    encode_data = decoder(encode_data, decode_shortcut)
    with scope('logit'):
        logit = conv(
            encode_data, label_number, 1, stride=1, padding=0, bias_attr=True)
        logit = fluid.layers.resize_bilinear(logit, img.shape[2:])
    return logit