models.py 9.6 KB
Newer Older
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
Dun 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
import paddle
import paddle.fluid as fluid

import contextlib
name_scope = ""

decode_channel = 48
encode_channel = 256
label_number = 19

bn_momentum = 0.99
dropout_keep_prop = 0.9
is_train = True

op_results = {}

default_epsilon = 1e-3
default_norm_type = 'bn'
default_group_number = 32


@contextlib.contextmanager
def scope(name):
    global name_scope
    bk = name_scope
    name_scope = name_scope + name + '/'
    yield
    name_scope = bk


def check(data, number):
    if type(data) == int:
        return [data] * number
    assert len(data) == number
    return data


def clean():
    global op_results
    op_results = {}


def append_op_result(result, name):
    global op_results
    op_index = len(op_results)
    name = name_scope + name + str(op_index)
    op_results[name] = result
    return result


def conv(*args, **kargs):
    kargs['param_attr'] = name_scope + 'weights'
56
    if 'bias_attr' in kargs and kargs['bias_attr']:
D
Dun 已提交
57 58 59 60 61 62 63 64 65 66 67
        kargs['bias_attr'] = name_scope + 'biases'
    else:
        kargs['bias_attr'] = False
    return append_op_result(fluid.layers.conv2d(*args, **kargs), 'conv')


def group_norm(input, G, eps=1e-5, param_attr=None, bias_attr=None):
    helper = fluid.layer_helper.LayerHelper('group_norm', **locals())

    N, C, H, W = input.shape
    if C % G != 0:
68
        print("group can not divide channle:", C, G)
D
Dun 已提交
69 70 71 72 73 74 75
        for d in range(10):
            for t in [d, -d]:
                if G + t <= 0: continue
                if C % (G + t) == 0:
                    G = G + t
                    break
            if C % G == 0:
76
                print("use group size:", G)
D
Dun 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                break
    assert C % G == 0
    param_shape = (G, )
    x = input
    x = fluid.layers.reshape(x, [N, G, C // G * H * W])
    mean = fluid.layers.reduce_mean(x, dim=2, keep_dim=True)
    x = x - mean
    var = fluid.layers.reduce_mean(fluid.layers.square(x), dim=2, keep_dim=True)
    x = x / fluid.layers.sqrt(var + eps)

    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype='float32',
        default_initializer=fluid.initializer.Constant(1.0))

    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype='float32', is_bias=True)
    x = fluid.layers.elementwise_add(
        fluid.layers.elementwise_mul(
            x, scale, axis=1), bias, axis=1)
    return fluid.layers.reshape(x, input.shape)


def bn(*args, **kargs):
    if default_norm_type == 'bn':
        with scope('BatchNorm'):
            return append_op_result(
                fluid.layers.batch_norm(
                    *args,
                    epsilon=default_epsilon,
                    momentum=bn_momentum,
                    param_attr=name_scope + 'gamma',
                    bias_attr=name_scope + 'beta',
                    moving_mean_name=name_scope + 'moving_mean',
                    moving_variance_name=name_scope + 'moving_variance',
                    **kargs),
                'bn')
    elif default_norm_type == 'gn':
        with scope('GroupNorm'):
            return append_op_result(
                group_norm(
                    args[0],
                    default_group_number,
                    eps=default_epsilon,
                    param_attr=name_scope + 'gamma',
                    bias_attr=name_scope + 'beta'),
                'gn')
    else:
        raise "Unsupport norm type:" + default_norm_type


def bn_relu(data):
    return append_op_result(fluid.layers.relu(bn(data)), 'relu')


def relu(data):
    return append_op_result(fluid.layers.relu(data), 'relu')


def seq_conv(input, channel, stride, filter, dilation=1, act=None):
    with scope('depthwise'):
        input = conv(
            input,
            input.shape[1],
            filter,
            stride,
            groups=input.shape[1],
145
            padding=(filter // 2) * dilation,
D
Dun 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
            dilation=dilation)
        input = bn(input)
        if act: input = act(input)
    with scope('pointwise'):
        input = conv(input, channel, 1, 1, groups=1, padding=0)
        input = bn(input)
        if act: input = act(input)
    return input


def xception_block(input,
                   channels,
                   strides=1,
                   filters=3,
                   dilation=1,
                   skip_conv=True,
                   has_skip=True,
                   activation_fn_in_separable_conv=False):
    repeat_number = 3
    channels = check(channels, repeat_number)
    filters = check(filters, repeat_number)
    strides = check(strides, repeat_number)
    data = input
D
Dun 已提交
169
    results = []
D
Dun 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    for i in range(repeat_number):
        with scope('separable_conv' + str(i + 1)):
            if not activation_fn_in_separable_conv:
                data = relu(data)
                data = seq_conv(
                    data,
                    channels[i],
                    strides[i],
                    filters[i],
                    dilation=dilation)
            else:
                data = seq_conv(
                    data,
                    channels[i],
                    strides[i],
                    filters[i],
                    dilation=dilation,
                    act=relu)
D
Dun 已提交
188
            results.append(data)
D
Dun 已提交
189
    if not has_skip:
D
Dun 已提交
190
        return append_op_result(data, 'xception_block'), results
D
Dun 已提交
191 192 193 194 195 196 197
    if skip_conv:
        with scope('shortcut'):
            skip = bn(
                conv(
                    input, channels[-1], 1, strides[-1], groups=1, padding=0))
    else:
        skip = input
D
Dun 已提交
198
    return append_op_result(data + skip, 'xception_block'), results
D
Dun 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211


def entry_flow(data):
    with scope("entry_flow"):
        with scope("conv1"):
            data = conv(data, 32, 3, stride=2, padding=1)
            data = bn_relu(data)
        with scope("conv2"):
            data = conv(data, 64, 3, stride=1, padding=1)
            data = bn_relu(data)
        with scope("block1"):
            data, _ = xception_block(data, 128, [1, 1, 2])
        with scope("block2"):
D
Dun 已提交
212
            data, results = xception_block(data, 256, [1, 1, 2])
D
Dun 已提交
213 214
        with scope("block3"):
            data, _ = xception_block(data, 728, [1, 1, 2])
D
Dun 已提交
215
        return data, results[1]
D
Dun 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313


def middle_flow(data):
    with scope("middle_flow"):
        for i in range(16):
            with scope("block" + str(i + 1)):
                data, _ = xception_block(data, 728, [1, 1, 1], skip_conv=False)
    return data


def exit_flow(data):
    with scope("exit_flow"):
        with scope('block1'):
            data, _ = xception_block(data, [728, 1024, 1024], [1, 1, 1])
        with scope('block2'):
            data, _ = xception_block(
                data, [1536, 1536, 2048], [1, 1, 1],
                dilation=2,
                has_skip=False,
                activation_fn_in_separable_conv=True)
        return data


def dropout(x, keep_rate):
    if is_train:
        return fluid.layers.dropout(x, 1 - keep_rate) / keep_rate
    else:
        return x


def encoder(input):
    with scope('encoder'):
        channel = 256
        with scope("image_pool"):
            image_avg = fluid.layers.reduce_mean(input, [2, 3], keep_dim=True)
            append_op_result(image_avg, 'reduce_mean')
            image_avg = bn_relu(
                conv(
                    image_avg, channel, 1, 1, groups=1, padding=0))
            image_avg = fluid.layers.resize_bilinear(image_avg, input.shape[2:])

        with scope("aspp0"):
            aspp0 = bn_relu(conv(input, channel, 1, 1, groups=1, padding=0))
        with scope("aspp1"):
            aspp1 = seq_conv(input, channel, 1, 3, dilation=6, act=relu)
        with scope("aspp2"):
            aspp2 = seq_conv(input, channel, 1, 3, dilation=12, act=relu)
        with scope("aspp3"):
            aspp3 = seq_conv(input, channel, 1, 3, dilation=18, act=relu)
        with scope("concat"):
            data = append_op_result(
                fluid.layers.concat(
                    [image_avg, aspp0, aspp1, aspp2, aspp3], axis=1),
                'concat')
            data = bn_relu(conv(data, channel, 1, 1, groups=1, padding=0))
            data = dropout(data, dropout_keep_prop)
        return data


def decoder(encode_data, decode_shortcut):
    with scope('decoder'):
        with scope('concat'):
            decode_shortcut = bn_relu(
                conv(
                    decode_shortcut, decode_channel, 1, 1, groups=1, padding=0))
            encode_data = fluid.layers.resize_bilinear(
                encode_data, decode_shortcut.shape[2:])
            encode_data = fluid.layers.concat(
                [encode_data, decode_shortcut], axis=1)
            append_op_result(encode_data, 'concat')
        with scope("separable_conv1"):
            encode_data = seq_conv(
                encode_data, encode_channel, 1, 3, dilation=1, act=relu)
        with scope("separable_conv2"):
            encode_data = seq_conv(
                encode_data, encode_channel, 1, 3, dilation=1, act=relu)
        return encode_data


def deeplabv3p(img):
    global default_epsilon
    append_op_result(img, 'img')
    with scope('xception_65'):
        default_epsilon = 1e-3
        # Entry flow
        data, decode_shortcut = entry_flow(img)
        # Middle flow
        data = middle_flow(data)
        # Exit flow
        data = exit_flow(data)
    default_epsilon = 1e-5
    encode_data = encoder(data)
    encode_data = decoder(encode_data, decode_shortcut)
    with scope('logit'):
        logit = conv(
            encode_data, label_number, 1, stride=1, padding=0, bias_attr=True)
        logit = fluid.layers.resize_bilinear(logit, img.shape[2:])
    return logit